
HPE iLO 5 security: Go home cryptoprocessor,

you’re drunk!

Alexandre Gazet1, Fabien Périgaud2, and Joffrey Czarny
alexandre.gazet@airbus.com

fabien.perigaud@synacktiv.com

snorky@insomnihack.net

1 Airbus
2 Synacktiv

Abstract. At the core of HPE Gen10 servers lies the Integrated Lights
Out 5 (iLO 5) technology. This new revision (hardware and software) of
the remote management technology introduced a key feature built into
the hardware and described as a silicon root of trust.

Our previous studies [4, 6, 10] of the technology highlighted a critical
flaw in the secure boot process, allowing us to load a rogue userland
applicative image.

At the start of 2020, we observed that new HPE iLO5 firmware
(versions 2.x) would come as encrypted binary blobs. In times where
supply chain and platform security are more exposed than ever, we
decided to review the security implications of the new firmware packaging.

In this paper we propose:
— A walkthrough on how to approach encrypted firmware updates
— A complete description and analysis of the new encryption mechanism,

including hardware resources (cryptographic coprocessor)
— A new take on the Gen10 server hardware, resulting from our discovery

of a debug port on the server boards
— A demonstration that Frankenstein firmware and supply chain attacks

are still possible
— Lessons learnt about the implementation: strengths/weaknesses as

well as mistakes that were made

All the results presented in this paper have been obtained with the
following hardware platforms:

— HPE ProLiant ML110 Gen10 (platform id 0x020b)
— MicroServer Gen10 Plus (platform id 0x0222)

1 Transitioning to new firmware

With the introduction of iLO5 version 2.x firmware, we noticed that
our previously developed tooling [5] had become ineffective and firmware
extraction was not possible anymore.
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With further scrutiny one could notice that the new firmware files
were mostly high entropy blobs which suggested the introduction of an
encryption overlay. Besides, according to the installation instructions of
the 2.10 firmware, “upgrading to iLO 5 version 2.10 is supported on servers
with iLO 5 1.4x or later installed.””. One could reasonably assume that a
change to support the encrypted firmware was introduced in versions 1.4x.

Thus, we decided to start our analysis with these intermediary/transi-
tion versions (1.4x). The question was thus to discover how the firmware
had evolved between firmware 1.3x, and 1.4x versions.

1.1 Understanding the changes

As a reminder, the boot chain of an iLO5 system is made of five
components, as shown on figure 1:

1. a bootrom stored on the ASIC itself

2. a first-stage bootloader, Secure Micro Boot

3. a second-stage bootloader, neba9

4. a real-time operating system, Integrity OS

5. an Integrity userland image

iLO5 ASIC
(bootrom)

Secure Micro
Boot 1.01 neba9 0.9.7 iLO 5 Kernel

00.09.51
userland
1.30.35

Fig. 1. HPE iLO5 1.x boot chain

Diffing the structure of firmware 1.39 and 1.48, one could observe that
the bootloaders were unchanged. Thus the modification lies either in the
kernel, or in the userland applicative image.

1.2 Firmware Update Manager (fum)

The next logical target to check was the Firmware Update Manager
(fum) task. This task handles most of the heavy lifting associated with
firmware updates:

— check of the update target: iLO chip, CPLD, Innovation or Manage-
ment engines, etc.
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— check of the integrity of the update blob (cryptographic signature)
— writing into persistent storage media (SPI flash for example)
— etc.
Based on our previous knowledge of this component, we quickly noticed

a modification in the code path that handles the iLO component update.
One of the most noticeable artefacts is the presence of an encrypted RSA

private key in the data of the task, as shown in listing 1.

----- BEGIN ENCRYPTED PRIVATE KEY -----

MIIJrTBXBgkqhkiG9w0BBQ0wSjApBgkqhkiG9w0BBQwwHAQIjhdNQLNz8zoCAggA

MAwGCCqGSIb3DQIKBQAwHQYJYIZIAWUDBAEqBBAEJcEYMX1ZMZFCj4 / IdBSrBIIJ

[...]

xVKQ5YnhRsZnhe70T3pncVbMg + ZA3ai8urNxUrN7OhPeP2nicxlndWtqadrus /R5

meRspuW0AKzWAQN3EDse3SzlYTwGd6Jvb6ms / BqGrxvt

-----END ENCRYPTED PRIVATE KEY -----

Listing 1. New encrypted RSA private key

The newly introduced code heavily relies upon OpenSSL primitives.
The decryption process can be summarized as exposed in listing 2.

The encryption of the firmware blob is based on a symmetric-key cipher,
AES256, used with an authenticated mode, Galois/Counter Mode (GCM).
The two functions PEM_read_bio_RSAPrivateKey and EVP_OpenInit are
instrumental here. Their prototype is shown in listings 3 and 4; from its
man page: “EVP_OpenInit() initializes a cipher context ctx for decryption
with cipher type. It decrypts the encrypted symmetric key of length ekl
bytes passed in the ek parameter using the private key priv. The IV is
supplied in the iv parameter.”.

Using this knowledge, one can infer the layout of the new encrypted
firmware file format, as shown in figure 2:

— Bytes 0x0-0x200 (4096 bits) are the AES symmetric key, encrypted
with the public part of the encrypted RSA private key found in the
data of the task. This AES key is automatically decrypted by the
high-level OpenSSL EVP_OpenInit function (envelope decryption).

— Bytes 0x200-0x20C (96 bits) are used as an initialization vector
for the AES256-GCM cipher.

— The last 0x10 bytes (128 bits) of the firmware blob are the AES
GCM tag. The purpose of an authenticated mode is to enforce
that the encrypted data has not been tampered with before the
decrypted data is actually used.

bio_buffer = BIO_new_mem_buf ( RSA_PRIVATE_KEY , -1);

rsa_key = PEM_read_bio_RSAPrivateKey ( bio_buffer , 0,

pem_password_cb , 0);

pkey = EVP_PKEY_new ();
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EVP_PKEY_assign_RSA (pkey , rsa_key );

evp_cipher_ctx = EVP_CIPHER_CTX_new ();

cipher_type = EVP_aes_256_gcm ();

EVP_OpenInit ( evp_cipher_ctx , cipher_type , pbFirmware , 0x200 ,

pbFirmware + 0x200 , pkey );

EVP_CIPHER_CTX_ctrl ( evp_cipher_ctx , EVP_CTRL_GCM_SET_TAG , 0x10 ,

& pbFirmware [* pcbFirmwaresize_ - 0x10 ]);

EVP_DecryptUpdate ( evp_cipher_ctx , pbFirmware , &outl ,

pbFirmware + 0x20C , * pcbFirmwaresize_ - 0 x21C );

* pcbFirmwaresize_ = outl ;

EVP_DecryptFinal ( evp_cipher_ctx , & pbFirmware [ outl ], & outl );

* pcbFirmwaresize_ += outl ;

Listing 2. Firmware decryption pseudo-code

authentication tag
(0x10 bytes)encrypted blobencrypted AES key

(0x200 bytes)

AES initialization vector
(0xC bytes)

Fig. 2. HPE iLO5 encrypted firmware layout

int EVP_OpenInit ( EVP_CIPHER_CTX *ctx , EVP_CIPHER *type ,

unsigned char *ek , int ekl , unsigned char *iv ,

EVP_PKEY * priv );

Listing 3. PEM_read_bio_RSAPrivateKey

RSA * PEM_read_bio_RSAPrivateKey (BIO *bp , RSA **x,

pem_password_cb *cb , void *u);

Listing 4. PEM_read_bio_RSAPrivateKey

To “unlock” the use of the RSA private key, a callback function is
passed to PEM_read_bio_RSAPrivateKey. This callback function fills out
a buffer with the correct passphrase. The implementation in fum is shown
in listing 5.
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int __fastcall pem_password_cb ( char * passphrase , int size , int

rwflag , void *u)

{

unsigned int i;

_DWORD key_mask [8];

_DWORD HW_SECRET [16];

key_mask [0] = 0;

key_mask [1] = 0xCE;

key_mask [2] = 0;

key_mask [3] = 0 xD00000 ;

key_mask [4] = 0 x86C900 ;

key_mask [5] = 0 x9A0000 ;

key_mask [6] = 0 x700000 ;

key_mask [7] = 0 x190000 ;

if ( size < 0x20 || rwflag == 1 )

return 0;

HW_SECRET [0] = MEMORY [0 x1F200D8 ];

HW_SECRET [1] = MEMORY [0 x1F20B00 ];

HW_SECRET [2] = MEMORY [0 x1F20B08 ] & 0 xFFFFFFF0 ;

HW_SECRET [3] = MEMORY [0 x1F20B0C ];

HW_SECRET [4] = MEMORY [0 x1F21810 ];

HW_SECRET [5] = MEMORY [0 x1F21840 ];

HW_SECRET [6] = MEMORY [0 x1F21850 ];

HW_SECRET [7] = MEMORY [0 x1F21890 ];

for ( i = 0; i < 0x20; ++i )

passphrase [i] = key_mask [i] ^ HW_SECRET [i];

return 0x20;

}

Listing 5. PEM_read_bio_RSAPrivateKey passphrase callback

pem_password_cb fills in a buffer of eight 32-bit words, using memory
mapped values (from 0x1F20XXX and 0x1F21XXX addresses) and a static
xor mask. Interestingly, these memory regions are not part of the sections
of the fum task.

As shown in listing 6, some information regarding the physical to
virtual memory mapping of the task are present within the binary itself
(more on this later). According to this extract a 4KiB page of physical
memory located at 0xC0000000 is mapped at virtual address 0x1F20000;
0xC0001000 at virtual address 0x1F21000.

According to our previous works, physical memory region 0xC0000000

and 0xC0001000 actually refers to internal memory of the system-on-chip
(SOC) itself.

[...]

MR_RANGE <0 x83000000 , 0 x600000 , 0 x0400000000 , 0, 0>

MR_RANGE <0 xC0000000 , 0x1F20000 , 0 x0800000000 , 0, 0>

MR_RANGE <0 xC0001000 , 0x1F21000 , 0 x1000000000 , 0, 0>

MR_RANGE <0 xC0002000 , 0 x1F22000 , 0 x2000000000 , 0, 0>

MR_RANGE <0 xC0008000 , 0 x1F23000 , 0 x4000000000 , 0, 0>
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[...]

Listing 6. fum physical-virtual memory mapping extract

hardware key

iLO5 SOC

AES key
encrypted private key

encrypted firmware

clear-text
firmware

fum task

Fig. 3. HPE iLO5 firmware envelope encryption summary

To wrap it up, the 1.4x firmware, and more specifically the fum task,
derives a passphrase from an hardware key stored in the SOC, to unlock the
cryptographic material needed to decrypt (AES256-GCM) 2.x encrypted
firmware update blobs. A summary is shown in figure 3. Now the question
is, how to extract this hardware key?

1.3 Extracting the hardware key from the SOC

In 2018, our esteemed peer Nicolas Iooss reported CVE-2018-7105 [11]
to HPE, who subsequently released the security bulletin HPESBHF03866 [2].
This format-string based vulnerability in the proprietary SSH restricted
shell, post-authentication, offers a memory read and write primitive in
the context of the SSH task (known as ConAppCli). HPE Integrated
Lights-Out 3, 4 and 5 were impacted.

Nicolas released a powerful proof of concept exploitation code for
vulnerable iLO 4 systems. Thankfully, our faithful HPE ProLiant ML110
Gen10 server was still hanging around in our lab, running a vulnerable
iLO5 firmware version. Thus, we decided to port the first stage of that
exploit to iLO 5 systems and quickly obtained a functional memory read
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and write primitive. Due to our major laziness and to the nature of the
vulnerability, we had to cope with some limitations: null bytes and a
couple of escape characters are forbidden in the target address of the
primitive.

So far we know that a secret hardware key is read by the fum task.
Still, all we have is a read/write primitive in the ConAppCli task (SSH).

1.4 The kernel is your friend

As briefly introduced previously, the tasks themselves embed in their
data section some partial information regarding the physical to virtual
address mapping. The userland tasks have the ability to request the kernel
to map into their memory space some pre-defined memory resources.

The array of pre-defined memory resources is shown in listing 7. It
is shared by all the tasks. Each entry is a MEM_RANGE (as shown in 9)
structure describing a 4KiB page of physical memory, associated to its
virtual address (in green) and to a 64-bit mask (in red).

To map a memory resource, a task calls the memmap function; its
prototype is given in listing 8. The function takes a bit mask as single
argument. Internally, it walks through the list of all the memory resources,
if the mask argument matches the mask of an entry then this entry is
mapped by the API with support from the kernel.

. ConAppCLI .elf.RW :000 B7E20 ; MEM_RANGE MEM_RANGES []

MEM_RANGE <0 x80000000 , 0 x1F00000 , 1, 0, 0>

MEM_RANGE <0 x800EF000 , 0 x1F01000 , 2, 0, 0>

MEM_RANGE <0 x800F0000 , 0 x1F02000 , 4, 0, 0>

[...]

MEM_RANGE <0 xC0000000 , 0 x1F20000 , 0 x0800000000 , 0, 0>

MEM_RANGE <0 xC0001000 , 0 x1F21000 , 0 x1000000000 , 0, 0>

MEM_RANGE <0 xC0002000 , 0 x1F22000 , 0 x2000000000 , 0, 0>

[...]

MEM_RANGE <0 xC0011000 , 0 x1F2D000 , 0 x1000000000000 , 0, 0>

MEM_RANGE <0>

. ConAppCLI .elf.RW :000 B82D0

Listing 7. Memory resources description in fum

int __fastcall memmap ( __int64 mask )

Listing 8. memmap function

struct MEM_RANGE

{

void * phys_addr ;



8 HPE iLO 5 security: Go home cryptoprocessor, you’re drunk!

void * virt_addr ;

unsigned __int64 mask ;

int field_10 ;

int field_14 ;

};

Listing 9. MEM_RANGE structure definition

As shown in listing 10, we noticed that a function in ConAppCli makes
use of the memmap function to map the lower addresses of the SOC (i.e.
0xC0000XXX, bit mask 0x800000000). However this function is only called
when the task is exiting. It means that during most of the life-cycle of
this task, the SOC region is not mapped.

int __cdecl timer_func ()

{

int res;

memmap (0 x800000000LL );

res = 1000 * ( MEMORY [0 x1F2000C ] & 3) / 3 + 1000 *

( unsigned __int8 )( MEMORY [0 x1F2000C ] >> 2);

dword_9A6D8 = res;

return res;

}

Listing 10. timer_func in fum

To call this function at our discretion, we reused a trick from Nicolas’
exploit. The internal structures describing the commands of the restricted
shell are located in a read/write section, as shown in listing 11. Without
too much detail, it means one can modify the function pointer of a
command’s handler. Using the read/write primitive given by the format
string vulnerability, we overwrite the handler of the system1 object to
call the timer function instead.

As a result, sending the command “show /system1” to the restricted
shell will trigger the execution of the timer_func and ultimately the
mapping of the SOC range in the ConAppCli task.

ConAppCLI .elf.RW :000 B0BB0 VTABLE_SYSTEM_NAME

OBJECT_VTABLE <System_nameShow , System_nameShow ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>

. ConAppCLI .elf.RW :000 B0BEC VTABLE_SYSTEM_NUMBER

OBJECT_VTABLE <System_numberShow , System_numberShow ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>

Listing 11. Restricted shell command definition structures in ConAppCli

A couple of extra tricks helped us to get the full potential of this exploit.
Again we abuse the fact that the pre-defined memory resource structures
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are located in a writeable section, and the fact the kernel honours our
requests (with some limitations).

— Problem: Mapping the 0xC0000000 physical addresses range is
easy, however due to the format string limitation, reading virtual
addresses in the form 0x1F200xx is impossible due to the null byte.
Solution: One can update the virtual address of the region entry
to 0x1F21000, thus using some sort of double mapping, to ease our
read through the format string exploit.

— Problem: How to map the range 0xC0001000?
Solution: The timer function calls memmap with a mask set
to 0x800000000. One can update the mask of this entry to
0x1800000000, thus it will match and be mapped as well.

Putting all the pieces together, we use our Python implementation
to remotely exploit the format string vulnerability, map the SOC into
ConAppCli, and read the hardware key from the SOC (as shown in list-
ing 12).

We then use this key to build a decryptor based on the same OpenSSL
primitives.

[+] dumping iLO HW keys :

[+] MMU: memory mapping magic :

>> patch_addr post 0 x2008@0xb8264

>> patch_addr post 0 x1008@0xb824c

>> patch_addr post 0 x18@0xb818c

>> patch_addr post 0 xc00000@0xb8181

[+] command hooks :

>> hook_addr post 0 x70158@0xb0bec

>> hook_addr post 0 x70158@0xb0bb4

>> 0 xbf7fffc3 @0 x1f200d8

>> 0 x01851c0d @0 x1f20b01

>> 0 x32f26410 @0 x1f20b08

>> 0 x08000621 @0 x1f20b0c

>> 0 x8000009f @0 x1f21810

>> 0 x81001012 @0 x1f21840

>> 0 x810010dc @0 x1f21850

>> 0 x81001121 @0 x1f21890

Listing 12. Reading SOC memory through a format string

1.5 We are looking for the Keymaker

Applying our tooling on the newly decrypted 2.x firmware, such as the
2.10 shown in listing 13, led to puzzling results.

0) Secure Micro Boot 2.02 , type 0x03 , size 0 x00008000
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1) Secure Micro Boot 2.02 , type 0x03 , size 0 x00005424

2) neba9 0.10.13 , type 0x01 , size 0 x00005644

3) neb926 0.3 , type 0x02 , size 0 x00000ad0

4) neba9 0.10.13 , type 0x01 , size 0 x00005644

5) neb926 0.3 , type 0x02 , size 0 x00000ad0

6) iLO 5 Kernel 00.09.60 , type 0x0b , size 0 x000d6158

7) iLO 5 Kernel 00.09.60 , type 0x0b , size 0 x000d6158

8) 2.10.54 , type 0x20 , size 0 x001dd9dc

9) 2.10.54 , type 0x23 , size 0 x00f2ad0b

a) 2.10.54 , type 0x22 , size 0 x004e7f28

Listing 13. HPE iLO5 2x new firmware structure

Overall the firmware structure is quite similar to 1.x firmware. However,
there are now 3 different Integrity userland applicative images (index
0x8, 0x9 and 0xa).

— Type 0x20 used to be the main image, however here its size is
surprisingly small.

— Type 0x22 is the recovery image.
— Type 0x23 is unknown at this point. Besides, once again looking at

its content, it is a high entropy blob of seemingly encrypted data.

What is in the first image (type 0x20)? The dissection of this
Integrity image is shown in listing 14. It is made of a single task named
keymgr.

-----------------[ Sections List ]-----------------

> name : . secinfo , 0x6e000 , 0 x260 bytes

> 0 x0000 - . keymgr .elf.RO

> 0 x0001 - . keymgr .elf.RW

> 0 x0002 - . keymgr .elf.RW2

> 0 x0003 - . libINTEGRITY .so.RO

> 0 x0004 - . libINTEGRITY .so.RW

> 0 x0005 - . libc .so.RW

> 0 x0006 - . libc .so.RW2

> 0 x0007 - . libopenssl .so.RW

> 0 x0008 - . libc .so.RO

> 0 x0009 - . libopenssl .so.RW2

> 0 x000a - .km. Initial . stack

> 0 x000b - . boottable

> 0 x000c - . libopenssl .so.RO

> 0 x000d - .km. heap

> 0 x000e - . secinfo

-----------------[ Shared modules ]-----------------

> mod 0x00 - libINTEGRITY .so size

> mod 0x01 - libc .so size

> mod 0x02 - libopenssl .so size

-----------------[ Tasks List ]-----------------
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> task 01 - path keymgr .elf - size 0 x00013588

Listing 14. keymgr single task image

After the extraction of the first hardware key we were confident we
had successfully removed the encryption. Still, it looks like the princess is
in another castle again.

At a high level the image type 0x20, or keymgr as it is mono-tasked, is
a stager, responsible for loading and decrypting the secure, full, encrypted
applicative image, as shown in figure 4.

iLO5 ASIC
(bootrom)

Secure Micro
Boot 2.02

neba9
0.10.13

iLO 5 Kernel
00.09.60

load and decrypt

stager
(keymgr)
2.10.54

secure
(type 0x23)

2.10.54

Fig. 4. HPE iLO5 2.x boot chain

We fell down the rabbit hole, again. Though, this first part was the
easy one, most of it was over in a week or so.

2 keymgr as secure loader

This section provides a detailed analysis of the keymgr secure loader.

2.1 Hardware anchorage attempt

In its early initialization steps, keymgr calls the map_mr_obj function,
as shown in listing 15. At a functional level, this function is very similar
to the memmap function seen in the previous section.

map_mr_obj (" MRC0000 ", 0x2A);

map_mr_obj (" MRC0001 ", 0x2B);

map_mr_obj (" MRC0030 ", 0x33);

map_mr_obj (" MRC0032 ", 0x34);

Listing 15. Memory resource object mapping in keymgr
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Instead of using a mask to identify the memory region resource, it uses
the name of the resource object (alongside its id). For example, “MRC0000”
instructs the kernel to map, in the keymgr virtual address space, the
physical memory page starting at 0xC0000000, “MRC0032” 0xC0032000,
and so on.

0xC0000000 and 0xC0001000 refer to SOC region. 0xC0030000 and
0xC0032000 also are old acquaintances, they refer to a cryptographic
coprocessor (later called cryptoprocessor) introduced with iLO5 generation
(most probably located on the SOC as well).

To the best of our knowledge, the cryptoprocessor is undocumented
at the time of this study. These components are usually provided by the
SOC vendors, as security IP modules directly integrated within the SOC
hardware (as for example the ARM CryptoCell module [1]). Access to
developer/technical documentation for this sort of component is most
often subject to non disclosure agreements (NDA) with the owner of the
IP block.

In our situation, we could not identify the module used by the iLO
SOC, and thus had no prior knowledge about its capabilities, hardware
interfaces, API, etc. Our only guess was that the use of a cryptoprocessor
by keymgr, basically a key derivation function relying on a cryptoprocessor,
was a specific development from HPE. A couple of hints can be found in
some paths embedded in the binary as compilation artefacts, as shown in
listing 16.

ROM :0001155 C 00000013 C src/ local_crypto .c

ROM :0001420 C 00000011 C src/ aes_engine .c

Listing 16. Compilation artefacts in keymgr

The binaries being fully stripped of symbols, all the descriptions,
variables, constants and function names, etc. given below are based on our
own analysis and experiments with the cryptoprocessor. As a quick note on
the methodology, to identify the primitives exposed by the cryptoprocessor
we mainly relied upon:

— the interface with OpenSSL functions. The lack of symbols can be
partially overcome by using the error log feature which gives a line
number and a source file, thus allowing quick identification of the
function.

— analogy with the outer layer of encryption (eg. use of AES-GCM)
— size input/output buffers passed to cryptographic algorithm
keymgr takes advantage of three different primitives of the cryptopro-

cessor:
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— SHA384 hash function
— AES256 symmetric block cipher, used in CTR mode
— AES256 symmetric block cipher, used in GCM mode

SHA384 primitive The SHA384 digest primitive is the first one being used.
It is located at physical addresses 0xC0032000. In keymgr it is mapped at
0x1F2A000. The cryptoprocessor actually offers many channels in parallel.
An overview is shown in figure 5.

ctrl flags (32-bits)

input buffer
(0x80 bytes)

output buffer
(0x30 bytes)

+0x0

+0x40

+0x80

channel 0
channel 1
channel 2
channel 3

channel n-1
channel n

0xC0032000

+0x100
+0x200
+0x300

offset (32-bits)+0x10

Fig. 5. Cryptoprocessor digest engines

— Ctrl: this register controls the configuration and operations of
the cryptoprocessor. It is also updated to reflect the state of the
cryptoprocessor.

— Offset: this register contains the number of bits written into the
input buffer since the last reset of the channel. It is automatically
updated on every write to the input buffer.

— Output buffer: this buffer is updated by the cryptoprocessor with
the result of the digest operation. The size of the output depends
upon the configuration of the channel. In keymgr, the cryptopro-
cessor is configured to compute a SHA384 digest (0x30 bytes).

— Input buffer: this buffer is updated by the client application to
feed the cryptoprocessor with new input. The size of the hardware
buffer is 0x80 bytes.
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1718

RSZ

031 24

OP_CTRL U

1923

(U)nknown

116

Fig. 6. Digest channel configuration register details

A more detailed description of the control register is shown in figure 6.

— R (bit 0): is a synchronization flag. It indicates that the output is
ready.

— SZ (bits 17-18): this field is used to configure the digest size (e.g.
SHA256, SHA384, SHA512)

— OP_CTRL (bits 24-32): this field controls the operations of the chan-
nel.

The following flags have been understood for the most significant byte
(OP_CTRL)

— 0x80 (bit 7): Setting the most significant bit to 1, resets the state
of the channel. Once written, the client application may wait for its
state to flip. This synchronization mechanism signal the readiness
of the cryptoprocessor.

— 0x01 (bit 0): is set to initialize a new digest, as shown in listing 17.
The coproc_crypto_channel_init function is found in the kernel.

— 0x02 (bit 1): semantics is unclear, it seems to be used to indicate
that more data is expected.

— 0x04 (bit 2): is set to finalize a digest, as shown in listing 18.
The coproc_crypto_channel_finalize function is found in the
kernel.

From listing 18, one also learns that bit 0 of the control register
is used as a synchronization signal indicating that the output of the
cryptoprocessor operation is available.

void __fastcall coproc_crypto_channel_init (int channel , int

conf_flag )

{

unsigned int * ptr_flags ;

unsigned int new_flags ;

ptr_flags = (( channel << 8) | 0 xC0032000 );

* ptr_flags = 0 x80000000 ;

new_flags = conf_flag << 17;

while ( (* ptr_flags & 0 x80000000 ) != 0 )

;

* ptr_flags = new_flags ;

* ptr_flags = new_flags | 0 x1000000 ;
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}

Listing 17. coproc_crypto_channel_init function

void __fastcall coproc_crypto_channel_finalize (int channel , int *

digest_out )

{

_BYTE * ptr_flags ;

int new_flags ;

ptr_flags = (( channel << 8) | 0 xC0032000 );

new_flags = * ptr_flags | 0 x4000000 ;

* ptr_flags = new_flags ;

while ( (* ptr_flags & 1) != 0 )

;

memcopy ( digest_out , ptr_flags + 0x40 , 0x40 - (( new_flags & 0

x60000u ) >> 13));

}

Listing 18. coproc_crypto_channel_finalize function

Early digest and cryptographic material seeding With this knowl-
edge in mind, one can analyse the coproc_crypto_initialize function
from keymgr. It is called very early; right after the memory resources
creation.

For an easier understanding, we have split the function into three
parts.

Part 1, as shown in listing 19, is simple; however, it is also quite chal-
lenging. It starts by copying twelve 32-bit words from the cryptoprocessor
output buffer (on channel 0) into a local buffer (thus 0x30 bytes, 384 bits).
At first, this is puzzling as it is the very first interaction of the task with
the cryptoprocessor.

Besides, after inspection of the bootloaders and kernel code, no other
interaction with the cryptoprocessor channel 0 could be found. The answer
to this enigma was found by observing the counter register of the channel
0. Indeed the counter indicates that 0x8000 bytes were processed.

An educated guess could tell us that 0x8000 is the size of the first
bootloader (BL0). Thus, we formulated the hypothesis that the output
buffer contains an artefact from the bootrom, which computed the digest
of the first bootloader, in the early steps of the boot process, during the
validation of the cryptographic signature of BL0 by the bootrom (RSA4096
key). The hypothesis was later validated by comparing the value of the
output buffer with the actual SHA512 digest of the last 0x8000 bytes of
the firmware update file.
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coproc_crypto_initialize then call coproc_crypto_KAT which per-
forms a self-assessment of the cryptoprocessor (AES and SHA384 primi-
tives), using test vectors or known-answer tests (KAT).

Interestingly, at the end of this part, the value of the saved digest is
written back in the input buffer of the cryptoprocessor after the initializa-
tion of a new digest transaction.

One can observe that the flag SHA384_DIGEST_MORE_DATA (0x2000000)
is set. Still, experimentally we observed that the value of the bytes written
before this flag is set does not influence the final digest value.

for ( i = 0; i < 0xC; ++i )

coproc_state [j] = SHA384_DIGEST_OUTPUT [i];

if ( ! coproc_crypto_KAT () )

return 0;

SHA384_DIGEST_FLAGS = 0 x80000000 ;

SHA384_DIGEST_FLAGS = 0 x1020000 ; // config & start

for ( j = 0; j < 0xC; ++j )

{

SHA384_DIGEST_INPUT [j] = coproc_state [j];

coproc_state [j] = 0;

}

SHA384_DIGEST_FLAG_MODE = SHA384_DIGEST_MORE_DATA ;

Listing 19. coproc_crypto_initialize - part 1

Besides, a key observation here can be made by comparing the code
with the one in function coproc_crypto_channel_init (listing 17): the
synchronization mechanisms of the cryptoprocessor are ignored. Here the
most significant bit (msb) of the control register is not properly checked.
After writing 0x80000000, setting the msb to 1, one should wait for and
verify that the msb is reset by the cryptoprocessor, indicating that it is
ready to accept further configuration and operations.

Part 2, as shown in listing 20, fills the input buffer (0x80 bytes) with
values from the SOC (0x1F2xxxx) and zeroes. Most of the SOC values
are also used in the computations of the passphrase of the RSA key.

SHA384_DIGEST_INPUT [0] = 0;

SHA384_DIGEST_INPUT [1] = dword_1F200A0 & 0 xFFFF0000 ;

casted_val = dword_1F200AC ;

SHA384_DIGEST_INPUT [2] = casted_val ;

SHA384_DIGEST_INPUT [3] = casted_val ;

byte_1F20AE0 = 0x10;

SHA384_DIGEST_INPUT [4] = casted_val ;

SHA384_DIGEST_INPUT [5] = ( dword_1F200D8 | 0 x2000000 ) & 0 xFFFFFFDF ;

SHA384_DIGEST_INPUT [6] = dword_1F20B00 ;
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SHA384_DIGEST_INPUT [7] = dword_1F20B08 & 0 xFFFFFFF0 ;

v4 = dword_1F20B0C ;

SHA384_DIGEST_INPUT [8] = dword_1F20B0C

for ( k = 9; k < 0x1F; ++k )

SHA384_DIGEST_INPUT [k] = 0;

SHA384_DIGEST_INPUT_END = v4;

SHA384_DIGEST_FLAG_MODE = SHA384_DIGEST_DATA_END ;

for ( l = 0; l < 0xC; ++l )

coproc_state [l] = SHA384_DIGEST_OUTPUT [l];

SHA384_DIGEST_FLAGS = SHA384_DIGEST_CLEAR_OUTPUT ;

Listing 20. coproc_crypto_initialize - part 2

As soon as the SHA384_DIGEST_DATA_END flag (0x4) is written in the
most significant byte of the control register, keymgr reads the content
of the output buffer and saves it into a the coproc_state. Again, as we
saw for the initialisation phase, the synchronization mechanisms of the
cryptoprocessor are ignored here. As we will see later in this paper, this
omission will have consequences.

As a side note, the algorithm described here is valid for iLO5 2.3x
firmware. A minor variation is used for 2.1x firmware.

Part 3, as shown in listing 21, finally calls the function
coproc_crypto_key_schedule which is really where the cryptographic
material derivation takes place.

To coarsely summarize, keymgr hashes a state containing hardware
stored (SOC) values padded with 0. The resulting digest (384 bits) is used
as the initial seed for the cryptographic material derivation function.

v7 = coproc_crypto_key_schedule (& coproc_state );

coproc_crypto_sha384_digest (& coproc_state , 0x30u , & coproc_state );

SHA384_DIGEST_FLAGS = SHA384_DIGEST_CLEAR_OUTPUT ;

memset (& coproc_state , 0, sizeof ( coproc_state ));

Listing 21. coproc_crypto_initialize - part 3

2.2 Cryptographic material derivation

As shown in listing 22, the key scheduling function is a bit complex,
thus we are going to break it down into simpler sub-pieces. At high level,
the key scheduling function is responsible for the generation of three
elliptic curve keys (on the curve secp384r1). As shown in listing 23,
the gen_ec_key function heavily relies upon OpenSSL primitives like
EC_KEY_generate_key.
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coproc_crypto_cmd ( coproc_state , " KEY_SCHEDULE ",

0, 0, 0, & DRBG_BUFFER_POOL , 0 x240 );

EVP_EncodeBlock ( tmp_buffer , & DRBG_BUFFER_POOL , 0x21);

printf ("Key Schedule Validation : %s\n", tmp_buffer );

rnd_meth = hw_assisted_drbg ();

RAND_set_rand_method ( rnd_meth );

coproc_crypto_cmd ( DRBG_BUFFER_POOL . derived_keyx_1 ,

" DERIVED_KEYX ", 1, 0, 0, out_buffer , 0x30);

drbg_init ( out_buffer , 0x30u);

EC_KEY_POOL_ . ec_key1 = gen_ec_key ()

arg = dword_1F200A0 & 0 xFFFFFF ;

coproc_crypto_cmd ( DRBG_BUFFER_POOL . derived_keyx_2 ,

" DERIVED_KEYX ", 3, &arg , 4, out_buffer , 0x30);

drbg_init ( out_buffer , 0x30u);

EC_KEY_POOL_ . ec_key2 = gen_ec_key ()

extra_bytes_in = extra_entropy ( tmp_buffer , 0x30);

coproc_crypto_cmd ( DRBG_BUFFER_POOL . derived_keyx_3 ,

" DERIVED_KEYX ", 7, tmp_buffer ,

extra_bytes_in , out_buffer , 0x30);

drbg_init ( out_buffer , 0x30u);

EC_KEY_POOL_ . ec_key3 = gen_ec_key ()

drbg_rand_bytes ( tmp_buffer , 0x30u);

drbg_init ( tmp_buffer , 0x30u);

Listing 22. Key scheduling in keymgr

EC_KEY * gen_ec_key ()

{

_ECKEY * ec_key ;

ec_key = EC_KEY_new_by_curve_name ( NID_secp384r1 );

EC_KEY_generate_key ( ec_key );

EC_KEY_set_asn1_flag (ec_key , OPENSSL_EC_NAMED_CURVE );

EC_KEY_set_flags (ec_key , EC_FLAG_COFACTOR_ECDH );

return ec_key

}

Listing 23. Elliptic curve key generation

According to its documentation [9], “the private key is a random inte-
ger (0 < priv_key < order, where order is the order of the EC_GROUP
object)”. However, there is a twist in keymgr. The default set of func-
tions that OpenSSL uses for random number generation are replaced
(RAND_set_rand_method) by a custom number generator build around
the features exposed by the cryptoprocessor.

The custom number generator follows the NIST SP 800-90A rev1 rec-
ommendations for random number generation using deterministic random
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bit generators [7] (DRBG). More specifically it is a CTR DRBG, built
around the AES256-CTR (counter mode) primitive of the cryptoprocessor.

Looking at the initialization of this DRBG (or seeding), as shown in
listing 24, the drbg_seed function starts by hashing (SHA384) its buffer
input argument. The result is then re-treated by a very important primitive
we named coproc_crypto_cmd. To avoid unnecessary complexity, one can
describe coproc_crypto_cmd as a keyed digest (SHA384 cryptoprocessor
primitive), associated with an expansion function to generate an arbitrary
amount of output bytes. The “key” actually is the name of the “command”,
here “DRBG_SEED_LB”.

int __fastcall drbg_seed ( void * data_in , unsigned int data_size )

{

int seeding_count ;

EVP_CIPHER * engine ;

int res;

coproc_crypto_sha384_digest ( data_in , data_size , DRBG_SEED_CTX );

seeding_count = DRBG_INIT_COUNT ++;

coproc_crypto_cmd ( DRBG_SEED_CTX , " DRBG_SEED_LB ",

seeding_count , 0, 0, DRBG_SEED_LB_KEY , 0x30);

engine = EVP_aes_256_ctr ();

res = EVP_CipherInit ( DRBG_CIPHER_CTX , engine ,

DRBG_SEED_LB_KEY , DRBG_SEED_LB_IV , 1);

DRBG_NB_OUTPUT_BYTES = 0;

return res;

}

Listing 24. Generate elliptic curve public/private key pair

The prototype of coproc_crypto_cmd is shown in listing 25. The input
arguments are used to fill a buffer that is fed to the SHA384 digest:

— context_seed is the seed context, a buffer of 0x30 bytes (384 bits).
— misc_param is an integer input value, usually the index of the key

that is generated.
— cmd_context can be seen as the argument of the command, it may

be used to pass extra entropy to the function.

void __fastcall coproc_crypto_cmd (

_BYTE * context_seed ,

_BYTE * cmd_string ,

int misc_param ,

_BYTE * cmd_context , int cmd_context_size ,

_BYTE * output_buffer , int output_buffer_size )

}

Listing 25. coproc_crypto_cmd prototype
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For the “DRBG_SEED_LB” command, the output buffer size is 0x30

bytes. The first 0x20 are used as the key of the AES256 algorithm of the
DRBG, the next 0x10 bytes are used as its initialization vector.

Now, back to the key scheduling function, one can notice that
the DRBG is re-seeded with a different context prior to each elliptic
curve key generation. In the prologue of the key scheduling function,
coproc_crypto_cmd is called with the command “KEY_SCHEDULE”. This
command generates a “seeding pool” of 0x240 bytes (twelve buffers of
0x30 bytes) for the DRBG. Incidentally the “DERIVED_KEYX” command
is also called three times, some with minor modifications, such as passing
extra entropy bytes.

A summary of the cryptographic material derivation is shown in figure 7.
Three elliptic curve keys are generated. Logically, all randomness has been
removed from the process. Indeed, using a DRBG with a deterministic
seeding results in fully deterministic generated keys.

At the very end of the key scheduling function, just after the third
elliptic curve key generation, as shown in orange in listing 22, the DBRG
is re-used to generate 0x30 random bytes that are immediately used to
re-seed the DRBG itself. This state will be used later silently.

The structures and initial seeding pool are designed to generate and
handle twelve keys. However, only three keys are generated and only one
actively used. This may indicate further plans from HPE.

2.3 Firmware decryption

So far, we have gone through the cryptographic material derivation, the
output is a pool of three elliptic curve keys. As shown in listing 26, extract
from the main function, only the first key is used. load_image_type func-
tion walks through the mapped firmware looking for an image header with
a type set to 0x23, i.e. the new, secure, encrypted Integrity applicative
image. If found, this image is copied to its target load address.

res = coproc_crypto_initialize ();

if ( res )

{

ec_key = EC_KEY_POOL_ . ec_key1 ;

bio = BIO_new_fp ( FD_STDOUT , 0);

PEM_write_bio_EC_PUBKEY (bio , EC_KEY_POOL_ . ec_key1 );

BIO_free_all (bio);

}

load_image_type ( load_addr , & image_size , 0x23 , 1);

decrypt_image (ec_key , load_addr , & image_size );

Listing 26. keymgr main function
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Fig. 7. Key scheduling summary

The loaded image is then processed by the decrypt_image function,
an extract is given in listing 27. Besides, an overview of the header is
shown in figure 8.

Again the code relies upon an OpenSSL primitive, in that case the
function ECDH_compute_key [8]. According to its documentation it “per-
forms Elliptic Curve Diffie-Hellman key agreement. It combines the private
key contained in ecdh with the other party’s public key, [...] It stores the
resulting symmetric key in the buffer out”. Interestingly, the function also
makes use of the internal random number generated, this is the reason why
the DRBG was re-seeded in the prologue of the key scheduling function.

The header of the encrypted image blob start with a 0x200 bytes
buffer that contains an EC public key (point coordinate). This public
key is combined with the private key previously generated to compute a
shared secret (Elliptic Curve Diffie-Hellman key agreement). The shared
secret, once re-treated through a SHA384 digest, gives the encryption key
and an initialization vector for the AES256-GCM cipher used to decrypt
the image.
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The idea is very similar to the encryption of the firmware envelope.
Elliptic curve cryptography is used here instead of RSA to encrypt the
AES key, The encrypted image structure is shown in figure 8.

ec_pubkey = d2i_EC_PUBKEY (0, & load_addr , 0 x200 );

memset (& context , 0, sizeof ( context ));

EC_KEY_set_flags ( privkey , EC_FLAG_COFACTOR_ECDH );

pubkey = EC_KEY_get0_public_key ( ec_pubkey );

buffer_size = ECDH_compute_key ( derived_aes_key , 0x200 , pubkey ,

privkey , 0);

EC_KEY_free ( ec_pubkey );

coproc_crypto_sha384_digest ( derived_aes_key , buffer_size , aes_key );

aes_engine = EVP_aes_256_gcm ();

EVP_DecryptInit (& context , aes_engine , aes_key , load_addr + 0 x200 )

EVP_CIPHER_CTX_ctrl (& context , EVP_CTRL_AEAD_SET_TAG , 0x10 , load_addr

+ * p_image_size - 0x10)

EVP_DecryptUpdate (& context , load_addr , & p_data_out_size , load_addr +

0x20C , * p_image_size - 0 x21C ))

p_data_out_size ;

* p_image_size = p_data_out_size ;

EVP_DecryptFinal (& context , load_addr + v8 , & p_data_out_size )

* p_image_size += p_data_out_size ;

Listing 27. HPE iLO5 image decryption

authentication tag
(0x10 bytes)encrypted blobEC public key

(0x200 bytes)

AES initialization vector
(0xC bytes)

Fig. 8. HPE iLO5 encrypted image structure

3 Implementation

Our deep understanding of the key derivation algorithm enabled us to
implement it in Python and C (for an easier OpenSSL use). However, the
decrypted image is still a high-entropy blob of data, which means that we
still do not generate the correct encryption key.
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3.1 Interacting with the cryptoprocessor

Fortunately, one could ask the cryptoprocessor to perform operations
without executing any arbitrary code by leveraging read and write primi-
tives. We thus could use the CVE-2018-7105 against the SSH service to
experiment using the cryptoprocessor.

3.2 The SHA384_DIGEST_MORE_DATA bug

As we hinted previously, we discovered that the
SHA384_DIGEST_MORE_DATA was not working as expected. Indeed,
if the input buffer is not completely filled, its content is ignored (the
internal state of the cryptoprocessor is not updated) but the counter is
still updated by the amount of data written. In the “early digest” phase,
this means that the BootHash is not taken into account while computing
the hash. Instead, when the final hash is asked, the final input buffer is
read as if it was a circular buffer, until 0x30 + 0x80 bytes are processed.
A way to trigger the bug is pictured in figure 9.

0 0x180 (0x30 bytes)

BootHash

START UPDATE

Offset

Flags

Input

0x580 (0xB0 bytes)

DATA_END

HardwareKey

0x00

0x30

0x80

Fig. 9. Cryptoprocessor hash update bug

— Expected behavior:
SHA384( BootHash[0x0:0x30] || HardwareKey[0x0:0x80] )

— Real behavior:
SHA384( HardwareKey[0x0:0x80] || HardwareKey[0x0:0x30] )

3.3 The input buffer contiguity bug

We discovered a second bug, which might be linked to the first one:
when the input buffer is not written contiguously, the counter is updated
for each write by the amount of data written, with no consideration
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about the offset in the input buffer, and the final hash is computed by
contiguously reading in the input buffer as much bytes as described by
the counter.

0 0x280 (0x50 octets)

START DATA_END

Offset

Flags

Input

Reality
Expected

Fig. 10. Cryptoprocessor non-contiguous input buffer bug

This bug is present in the coproc_crypto_cmd function. When the
cmd_context argument is NULL, its placeholder in the input buffer is not
filled (to avoid writing null bytes where the content is already null) and
the input buffer is thus written non-contiguously. A way to trigger the
bug is pictured in figure 10.

— Expected behavior:
SHA384( INPUT[0x0:0x60] )

— Real behavior:
SHA384( INPUT[0x0:0x50] )

3.4 Adapting the implementation

With these two bugs in mind, we could fix our implementation and
obtain the same outputs as when interacting with the cryptoprocessor.
Still, the generated key does not allow to decrypt a correct firmware. With
no more idea in mind, we had to find a way to gain debugging information.

4 Getting debugging information

While studying the keymgr task, we noticed that it outputted a subset
of an intermediate state during the key derivation, as well as the generated
public key, as seen in listing 28.
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int __fastcall coproc_crypto_key_schedule ( COPROC_STATUS *

coproc_status ) {

// [...]

coproc_crypto_cmd ( coproc_status , " KEY_SCHEDULE ", 0, 0, 0, &

DRBG_BUFFER_POOL , 0 x240 );

EVP_EncodeBlock ( tmp_buffer , & DRBG_BUFFER_POOL , 0x21);

printf (" Key Schedule Validation : %s\n", tmp_buffer );

// [...]

}

int main_task () {

// [...]

validation = coproc_crypto_initialize ();

if ( validation )

{

ec_key = EC_KEY_POOL_ . ec_key1 ;

bio = BIO_new_fp ( FD_STDOUT , 0);

PEM_write_bio_EC_PUBKEY (bio , EC_KEY_POOL_ . ec_key1 );

BIO_free_all (bio);

}

// [...]

}

Listing 28. keymgr debug messages

Knowing the public EC key, we can check if our implementation failed
because of the key derivation or the decryption phase. Moreover, the Key

Schedule Validation output comes quite early in the derivation process:
there are only two important parts before:

— “early digest”: SHA384 computation from SOC registers values;
— beginning of “cryptographic material seeding”: a first call

to coproc_crypto_cmd function with KEY_SCHEDULE as the
cmd_string and a null cmd_context.

Both debug messages could be observed during iLO 5 boot sequence
by reading its UART output. During our previous study [6], we already
found the UART, so it was just a matter of plugging a USB-TTL adapter
and opening a minicom to read the debug messages, as seen in listing 29.

Loading 2.33.16

Key Schedule Validation : l03wN5OaDle9gyhfEJShR5jv0sKB0tfT25uk2U /

vjxRA

-----BEGIN PUBLIC KEY -----

MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAE4StRIN6NFi6X000aNMLePDm0mYmXIpDf

03 KrjkhWjZW8z3QNeyUXVNxHayZEKFL6Xk6vjkYYeJNdqg9yEzI0a2GK2emSgp4D

RNgUyUpix0jq5 + lluKXWUyFQ6rBJ45Dr

-----END PUBLIC KEY -----

Listing 29. keymgr debug messages during boot sequence of iLO 5 2.33

Both debug values mismatched what we computed using our imple-
mentation. This indicates that we failed in a very early stage of the
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coproc_crypto_initialize function, which is quite a good news since
the code involved is fairly simple.

5 We need to try harder!

After trying to bruteforce some of the SOC registers values in case one
of them changed since the earlier firmware, we came to the conclusion
that we needed better debugging primitives to understand our failure(s).

5.1 The JTAG way

As our task-force was not united in a single geographical location, we
had to buy a second server. HPE finally released a new MicroServer edition
which includes iLO 5, the MicroServer Gen10 Plus. While reviewing the
server specs on HPE website, a picture of the motherboard triggered our
interest: there seems to be a populated debug port with the iLO DEBUG

text printed (figure 11).
However, when we received our own MicroServer, the connector was

not populated. We thus had to identify it as a MICTOR 38 connector to
buy and solder one on our motherboard, after having tried to directly
solder copper wires on the 0.6mm pads. To our surprise, we discovered that
our previous MicroServer running iLO 4 also had this debug connector,
but there was not any mention of debugging capabilities printed on the
motherboard.

Finally, the JTAG connection seems buggy: while TMS, TCK and TDO

seem to work as expected (we are able to run an IDCODE scan), TDI has a
weird behavior, and we could not manage to make it work at the time of
writing this article. A logic analyzer trace shows that TDO output seems
to be somehow replicated on TDI.

Device ID #1: 0101 1011101000000000 01000111011 1 (0 x5BA00477 )

Device ID #2: 0000 0111100100100110 11110000111 1 (0 x07926F0F )

Listing 30. JTAG IDCODE scan

After a few days trying to make it work, we decided to explore another
idea.

5.2 The 0day way

Finding and exploiting a vulnerability Another way to debug our
code was to be able to execute arbitrary code on an up-to-date iLO 5, to
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Fig. 11. HPE MicroServer Gen10 Plus debug connector

check if executing the exact same code as the keymgr task would produce
different results than our implementation.

We thus started to review the attack surface reachable from the host
operation system: the CHIF task and all the other tasks to which commands
can be relayed.

Amongst all the tasks reachable from the host, the blackbox task is
the only one which is also present in the recovery image, which is not
encrypted after removing the initial envelope. We thus started to review
the various command handlers, and found that command 5 seems to be a
debug interface handling a bunch of subcommands and displaying results
to the UART output. Some of the subcommands handlers were prone to
buffer overflows, either in the stack or in the .data section.

As an example, here is how the fview subcommand is handled:

char v105 [64]; // [sp +5 C0h] [bp -C0h] BYREF

if ( argc > 1 && ! strcmp ( argv [1] , " fview ") )
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{

if ( argv [2] )

{

sprintf (v105 , "/ mnt/ blackbox / data /%s", ( const char *) argv [2]);

return fview ( v105 );

}

}

Listing 31. fview subcommand handling

As there is no ASLR nor NX, exploiting one of the stack buffer overflows
to execute arbitrary code in the context of the blackbox task was not so
complicated.

These vulnerabilities have been reported to HPE back in February 2021,
a fix has been issued in March 2021 (iLO 5 version 2.41 [3]) but at the
time of writing this article, no security bulletin has been released. HPE

plans to release security bulletin HPESBHF04120 near May 18, 2021.

Using the vulnerability Now that we are able to execute arbitrary
code in iLO, we could perform the following actions:

0. remap the SOC registers in our task using memmap;

1. execute the exact same code as keymgr for the “early digest” part;

2. dump the cryptoprocessor output buffer;

3. execute coproc_crypto_cmd function with the output as
context_seed, KEY_SCHEDULE as the cmd_string and a null
cmd_context;

4. dump the derivation output.

Figure 12 summarizes the process.
To our surprise, the cryptoprocessor output buffer and the derivation

output contain the exact same bytes as what we computed offline,
which are different than what is printed on the serial output.

Bonus: dumping cleartext credentials In order to appease our frus-
tration, we decided to implement the dump of iLO 5 users credentials
using the vulnerability. Contrary to iLO 4, the cfg_users.bin file con-
taining users credentials is now encrypted. However, the encryption key is
stored in a second file, named cfg_users_key.bin. Dumping these two
files is sufficient to retrieve cleartext credentials as seen in figure 13.

The cfg_users.bin contains the IV before the encrypted data and
cfg_users_key.bin contains a 256-bits key. Both are used by AES256-CBC

to decrypt the content.
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Early digest coproc_crypto_cmd
KEY_SCHEDULE

Key Schedule
Validation serial

print
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Early digest coproc_crypto_cmd
KEY_SCHEDULE

Sequencially executed process through vulnerability

1 2 3 4

Cryptographic material seeding

Fig. 12. Derivation process as executed through the vulnerability

Fig. 13. Dumping cleartext users credentials

5.3 The 1day way

The last remaining option is to be able to debug the keymgr task while
it is effectively decrypting the userland image, as all our previous tries failed
miserably. During our first study about iLO 5 security [6], we successfully
broke the secure boot by leveraging a vulnerability (CVE-2018-7113) in
the kernel allowing us to run a modified userland image.

We concluded this study saying that attackers will always be able to
build a “Frankenstein” firmware by using the old, vulnerable kernel with
an up-to-date userland image. Now this is time to test this affirmation
with a real use-case!

The software way Back in the days, we used a second vulnerability
(CVE-2018-7078) in the fum task to be able to directly write the firmware
on the SPI flash.
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CVE-2018-7078 was fixed in version 1.30 (released in June 2018) for
iLO 5 systems. When we tried to flash a vulnerable version (1.20) using the
web administration feature, we observed inconsistent behaviour between
our two target platforms:

— HPE ProLiant ML110 Gen10 (older) gracefully accepts the down-
grade to a vulnerable version (1.20).

— MicroServer Gen10 Plus rejects the downgrade. The lowest version
we were able to flash on this platform was 1.40.

This discrepancy has been discussed to HPE in the follow-up of our
vulnerability report. Additional Active Health System (AHS) logs were
shared with HPE to help them to identify the issue.

The hardware way To overcome the downgrade limitation and also to
avoid having to reflash an old vulnerable firmware each time we wanted to
test a new corrupted one, we directly went the hardware way (figure 14).

Fig. 14. Flashing custom iLO 5 firmware
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While dumping for the first time the current installed firmware to be
able to recover in case of failure, we noted that, despite being available in
new firmware, first stage bootloaders are never flashed, and the current
boot chain uses Secure Micro Boot 1.01.

We then tried to craft a custom firmware using a legitimate iLO 5

2.33 decrypted firmware in which we injected:
— Secure Micro Boot 1.01;
— vulnerable Integrity kernel 1.30.
This first try was a success: iLO booted until the end of the keymgr

task, because the old kernel did not implement the part used to load the
final userland image.

Our second try was to modify a string in keymgr and inject it directly
uncompressed (which would ease the next attempts): it still booted, al-
lowing us to now inject various hooks to observe the different states of
local variables and cryptoprocessor buffers during the decryption process.

We developed a minimal hooking engine using an unused function
as a code cave, and could dump arbitrary base64 encoded data on
the serial output. Our first move was to dump the data passed to the
coproc_crypto_key_schedule function. This data stems from a tempo-
rary buffer containing the 0x30 first bytes of the cryptoprocessor output
buffer after the “early digest” phase. The retrieved value still mismatched
our implementation.

A first positive point though, if we injected the retrieved values in
our implementation, we could compute the correct key to decrypt the
userland image, which indicates that our problem was located before the
first coproc_crypto_key_schedule function call.

As we wanted to ensure we got the good input values, we also dumped
the whole cryptoprocessor shared memory (including input buffer, output
buffer, counter and flags) and noticed a weird inconsistency: the output
buffer contained the same bytes as our implementation. A closer look at
the stack buffer content showed that the difference only affected the first
4 bytes.

Stack buffer

00000000: BC E9 73 3A DD 13 69 EB F4 CA BC 41 B4 8D DB DF

00000010: 76 AF D7 35 82 66 4C 2D 12 99 C2 23 E5 85 09 AE

00000020: DC 67 2A A6 D0 A9 90 4F CF AC C7 27 6E A8 FC 9A

Cryptoprocessor output buffer

00000000: 8F D6 EA 44 DD 13 69 EB F4 CA BC 41 B4 8D DB DF

00000010: 76 AF D7 35 82 66 4C 2D 12 99 C2 23 E5 85 09 AE

00000020: DC 67 2A A6 D0 A9 90 4F CF AC C7 27 6E A8 FC 9A

Listing 32. Difference between stack buffer and cryptoprocessor output buffer
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While looking at the code in IDA Pro, nothing could explain such a
behavior:

// fill input buffer

// [...]

SHA384_DIGEST_FLAG_MODE = SHA384_DIGEST_DATA_END ;// sha2 . digest ()

for ( l = 0; l < 0xC; ++l )

*& stack_buffer [4 * l] = SHA384_DIGEST_OUTPUT [l];

*& SHA384_DIGEST_FLAGS = SHA384_DIGEST_CLEAR_OUTPUT ;

Listing 33. Copying cryptoprocessor output buffer

When dumping the whole cryptoprocessor shared memory, another
weird behavior can be observed in the input buffer:

00000080: 0000 0000 0000 0600 0000 0000 0000 0000

00000090: 0000 0000 C3FF 7FBF 000D 1C85 1064 F232

000000 A0: 2106 0008 0000 0000 0000 0000 0000 0000

000000 B0: 8000 0000 0000 0000 0000 0000 0000 0000

000000 C0: 0000 0000 0000 0000 0000 0000 0000 0000

000000 D0: 0000 0000 0000 0000 0000 0000 0000 0000

000000 E0: 0000 0000 0000 0000 0000 0000 0000 0000

000000 F0: 0000 0000 0000 0000 0000 0000 0000 0580

Listing 34. Cryptoprocessor input buffer after computing digest

Values in blue are typical SHA2 padding values: a 0x80 byte followed
by zeros, and finally the input size in bits in big endian (0x580). This
observation indicates that the cryptoprocessor directly uses the shared
memory as its working buffer. Therefore, the output buffer might contain
intermediary hash value before the final digest is asked by setting flag
SHA384_DIGEST_DATA_END;

We thus dumped the cryptoprocessor state just before the digest flag
is set:

00000040: BCE9 733A 2CB0 47 EC B74C D8D4 0850 7DBB

00000050: 7937 CD5A 4599 CA65 5920 3622 16 D8 A65A

00000060: 9 AA5 62 B7 4B50 E3BF DF5A 26 E8 8D15 CECE

Listing 35. Cryptoprocessor output buffer after computing digest

The first 4 bytes are the same as what we found in the stack buffer!
There is a race condition between the application processor and its crypto-
graphic coprocessor: the copy loop starts copying bytes from an interme-
diary state before the cryptoprocessor effectively update them. A correct
implementation should have waited for the cryptoprocessor to updated
its flag indicating that the output is available. The race condition has
been reliably observed in 100% of our experiments with the cryptoproces-
sor. As a final argument, to generate the correct decryption key for the
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firmware, one has to take this race condition into account. We can only
make the assumption that HPE firmware encryption pipeline mirrors that
odd inconsistency.

One could observe this same intermediate state by dumping the SHA-2
internal state before the final operation.

6 Conclusion

Now that we understood how the firmware encryption works, we could
develop new tools in Python and C to handle decryption. The resulting
cleartext firmware can now be correctly parsed by the tools available at [5].
A quick look at the 2.x firmware branch indicates that 4 new tasks are
present, but they do not seem to add so much attack surface.

Even though it relies upon well known and tested algorithm (AES,
SHA384), the key derivation function designed by HPE and implemented
in keymgr is surprisingly complex. No vulnerability was found in that
function. However, by design, reading some specific memory area of the
SOC is enough the leak the seeds and thus re-generate all the needed
crypto-material.

We’re still wondering what the firmware encryption pipeline looks like
on HPE side given all the inconsistencies we encountered while trying to
reimplement it. We can only make the assumption that HPE firmware
encryption pipeline mirrors the various inconsistencies we have observed
during our research.

About the firmware encryption, we do not see a huge gain in terms of
security:

— on a vulnerability research PoV, a motivated attacker could still
reverse the encryption scheme and have a look at new firmware;

— in case of a supply chain attack, the security was already supposed
to be assured by the secure boot, the encryption does not raise the
bar.

About the secure boot, we concluded our previous study [6] by saying
that the secure boot was broken forever because of the lack of a hardware
revocation; this statement was proved right by this new chapter, as we
successfully built a hybrid firmware to debug the keymgr task.

To conclude this article, we wanted to remind readers that iLO 5 is a
critical component in a server security. However, it is still vulnerable to
supply chain attacks due to the broken secure boot. Besides, as highlighted
once again by the new vulnerability, it lacks all the exploit mitigations
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that have been implemented in modern operating systems for about 20
years.
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