
Backdooring your server through its BMC: the HPE iLO4 case

Fabien Périgaud, Alexandre Gazet & Joffrey Czarny
Rennes, June 13-15 , 2018

Outline

Introduction

Previous works

Firmware security

A firmware backdoor

Conclusion

1

HP Integrated Lights-Out (iLO)

• Baseboard Management Controller (BMC) embedded in most of HP servers for more
than 10 years.

Figure 1: Directly integrated on the server’s motherboard

This talk only concerns iLO version 4 (last version until mid-2017) found on
generations HP ProLiant Gen8 and Gen9.

Analyzes were more specifically performed on versions 2.44 et 2.50 of iLO4.

2

Hardware level (1/2)

Standalone system :

• Dedicated ARM processor: GLP/Sabine architecture
• Firmware stored on a NAND flash chip
• Dedicated RAM chip
• Dedicated network interface
• Full operating system and applicative image, running as soon as the server is

powered.

3

Hardware level (2/2)

iLO is directly connected to the PCI-Express bus. 4

Theory

Source: Managing HP servers through firewalls with Insight Software1

1ftp://ftp.hp.com/pub/c-products/servers/management/hpsim/hpsim-53-managing-firewalls.pdf

5

ftp://ftp.hp.com/pub/c-products/servers/management/hpsim/hpsim-53-managing-firewalls.pdf

Pratice

6

Outline

Introduction

Previous works

Firmware security

A firmware backdoor

Conclusion

7

Previous works - Demo

Demo

8

Methodology

• Firmware update file format analysis
• Extraction of its components: bootloader, kernel, userland image, signatures, etc.
• Kernel Integrity analysis
• Understanding of the memory layout of the userland modules (equivalent of

processes)
• Analysis of the web administration interface
• Total time of the study, approximately 5 man-months

Publication and tooling

• https://recon.cx/2018/brussels/talks/subvert_server_bmc.html

• https://github.com/airbus-seclab/ilo4_toolbox

9

https://recon.cx/2018/brussels/talks/subvert_server_bmc.html
https://github.com/airbus-seclab/ilo4_toolbox

Achievements

One critical vulnerability identified

• CVE-2017-12542, CVSSv3 9.8
• Authentication bypass and remote code execution
• Fixed in iLO 4 version 2.53 (buggy) and 2.54

Full server compromise

• Arbitrary code execution in the context of the web server
• iLO to host attack

10

Explications

Vulnerability located in the web server

• Handling of HTTP line by line
• Many uses of C string handling manipulation functions:

• strstr()
• strcmp()
• sscanf()

• Handling strings in C is complex and error-prone

11

How to properly use sscanf() ?

1 else if (!strnicmp(request, http_header, "Content-length:", 0xFu))
2 {
3 content_length = 0;
4 sscanf(http_header, "%*s %d", &content_length);
5 state_set_content_length(global_struct_, content_length);
6 }
7 else if (!strnicmp(request, http_header, "Authorization:", 0xEu))
8 {
9 sscanf(http_header, "%*s %15s %16383s", method, encoded_credentials);

10 handle_authorization_credentials(method, encoded_credentials);
11 }
12 else if (!strnicmp(request, http_header, "Connection:", 0xBu))
13 {
14 sscanf(http_header, "%*s %s", https_connection->connection);
15 }

12

Buffer overflow

The vulnerability allows to overflow the connection buffer of an https_connection
object.
struct https_connection {

...
0x0C: char connection[0x10];
...
0x28: char localConnection;
...
0xB8: void *vtable;

}

Double cheese !

• Overwriting the boolean localConnection : bypass of the REST API
authentication
curl -H "Connection: AAAAAAAAAAAAAAAAAAAAAAAAAAAAA" :)

• Overwriting the vtable pointer: arbitrary code execution
• No NX, no ASLR
• Web server working buffer at a fixed address

13

Buffer overflow

The vulnerability allows to overflow the connection buffer of an https_connection
object.
struct https_connection {

...
0x0C: char connection[0x10];
...
0x28: char localConnection;
...
0xB8: void *vtable;

}

Double cheese !

• Overwriting the boolean localConnection : bypass of the REST API
authentication
curl -H "Connection: AAAAAAAAAAAAAAAAAAAAAAAAAAAAA" :)

• Overwriting the vtable pointer: arbitrary code execution
• No NX, no ASLR
• Web server working buffer at a fixed address

13

Buffer overflow

The vulnerability allows to overflow the connection buffer of an https_connection
object.
struct https_connection {

...
0x0C: char connection[0x10];
...
0x28: char localConnection;
...
0xB8: void *vtable;

}

Double cheese !

• Overwriting the boolean localConnection : bypass of the REST API
authentication
curl -H "Connection: AAAAAAAAAAAAAAAAAAAAAAAAAAAAA" :)

• Overwriting the vtable pointer: arbitrary code execution
• No NX, no ASLR
• Web server working buffer at a fixed address

13

How-to DMA: CHIF module

Analysis of a module: CHIF (Channel Interface)

• Ability to read WHEA information from the host OS
• Direct (read) access to the host memory

Feature analysis

• 16MB of the host memory can be mapped into the iLO memory using an unknown
PCI register

• Writing to this mapped memory also impact the host memory
• Re-implement this mechanism in a shellcode executed in the context of the iLO

WWW server

14

Outline

Introduction

Previous works

Firmware security

A firmware backdoor

Conclusion

15

Battle plan

Current status

• Full platform compromise
• Arbitrary code execution on the iLO and the host
• RW primitives to the host memory from the iLO

Our objective

• Persistent compromise
• Survive host re-installation
• Stealthiness

Idea
iLO firmware backdooring

16

Firmware update

• Update mechanisms:
• Dedicated interface from the web administration panel
• From the host, using a dedicated binary

• Firmware updates are signed
• Integrity checked at two distinct times:

• Dynamically, during the update process, by the currently running iLO
• At boot-time, no hardware root of trust though

17

Bypass of the update mechanism

• Modules can expose services
• These services can be instantiated as object

SPI service

• “SpiService” in the spi module
• Direct R/W primitives into the SPI flash

Attack

• Invoke the“SpiService” from a shellcode injected into the WWW server
• Direct overwrite of the firmware in the flash
• Bypass of the dynamic integrity check of the firmware

18

Attach scheme

ILO 4

Web
server

HTTP

SPI
module

SpiService

At this point, a rogue firmware is written in the flash. 19

System boot-time

ILO4 bootchain

userland
1.check integrity
2.decompress
3. load

kernel

bootloaderHW reset

1.check integrity
2.decompress
3. load

20

The up-coming compromise

Methodology

• Full extraction of the
firmware update

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

21

The up-coming compromise

Methodology

• Full extraction of the
firmware update

• Patch of the
bootloader

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

21

The up-coming compromise

Methodology

• Full extraction of the
firmware update

• Patch of the
bootloader

• Patch of the kernel

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

21

The up-coming compromise

Methodology

• Full extraction of the
firmware update

• Patch of the
bootloader

• Patch of the kernel
• Addition of a

backdoor
• Rebuild the firmware

update
• Flash of the firmware

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

backdoor

21

Outline

Introduction

Previous works

Firmware security

A firmware backdoor

Conclusion

22

Target

WWW server

• Frequently exposed
• High-level network/HTTP communication primitives
• Ability to access the host memory through DMA (demonstrated)
• Large binary

23

How to insert the backdoor ?

The WWW server handles many pages, like

• /html/help.html
• /dbug.html
• /html/info_blade.html
• /html/admin_manage.html

Internally represented by structures; a dedicated pointer for each supported HTTP
method (GET, POST, PUT, DELETE, HEAD).

24

How to insert the backdoor ? (2)

• Insert code in an unused space of the WWW server binary
• Highjack pointers (GET et POST) from a page handler to point to our code

25

Backdoor architecture

We want a bidirectional channel between the iLO and the Linux host, through the DMA
link.

26

Web server implant

Code injection

• Overwrite the GET request handler
• Insert code in unused space of the binary: content of a downloadable PE file

Features

• R/W primitive in the host physical memory
• Re-use web server functions to parse/handle request

27

Linux kernel implant

Specifications

• Create a new kernel thread
• Allocate physical memory for the communication channel
• Retrieve and execute commands
• Retrieve commands output

Kernel API

• Create a new kernel thread : kthread_create_on_node() / wake_up_process()

• Physical memory allocation: kmalloc() / virt_to_phys()

• Run commands : call_usermodehelper()

• Retrieve their output : redirection into a temp file, then
kernel_read_file_from_path()

28

Linux kernel implant

Specifications

• Create a new kernel thread
• Allocate physical memory for the communication channel
• Retrieve and execute commands
• Retrieve commands output

Kernel API

• Create a new kernel thread : kthread_create_on_node() / wake_up_process()

• Physical memory allocation: kmalloc() / virt_to_phys()

• Run commands : call_usermodehelper()

• Retrieve their output : redirection into a temp file, then
kernel_read_file_from_path()

28

Communication channel

Simple structure in a shared physical memory page

• Buffer to store shell command sent by the iLO

• Buffer to store the command output, later grabbed by the iLO

• Booleans to signal the availability of data

struct channel {
int available_input;
int input_len;
char input[4096];
int available_output;
int output_len;
char output[];

}

29

Python client

Attacker side : client in Python

• Check for the presence of implants
• Installation and removal of the Linux implant
• Send arbitrary commands

Problem : received data are sometimes slightly corrupted
Root cause seems to be in the encoding of specific characters...

30

Code review

We need to patch this bug as well
Patch query string decoding bug...
"%d" => addrof("%02x")
PATCH5 = {"offset": 0x5D534, "size": 4, "prev_data": "25640000",

"patch": "A8CE0400", "decode": "hex"}
PATCHES.append(PATCH5)
ADR R1, "%d" => LDR R1, addrof("%02x")
PATCH6 = {"offset": 0x5D1A4, "size": 4, "prev_data": "E21F8FE2",

"patch": "88139FE5", "decode": "hex"}
PATCHES.append(PATCH6)

31

Demonstration

Demo

32

Forensic

How to detect the compromise of an iLO host?

• Retrieve current firmware using a shellcode that reads the content of the flash
memory

• Compare to a list of known “good” images
• https://github.com/airbus-seclab/ilo4_toolbox

• Smart kid: what about a backdoor that alters the read data on the fly?

33

https://github.com/airbus-seclab/ilo4_toolbox

Outline

Introduction

Previous works

Firmware security

A firmware backdoor

Conclusion

34

iLO4 key takeaways

• No hardware root of trust2, combined to the bypass of some of the integrity check
mechanism: persistence achievable and demonstrated

• DMA access to the host memory re-purposed as a dual-way communication channel
• The proof-of-concepts require the exploitation of a vulnerability and execution of

arbitrary code on the iLO system
• Vulnerability reported to the vendor and fixed (in May 2017), please patch!
• iLO4, critical remote administration tool:

• Fully disabled if not actively used
• Network isolation

2Supposedly fixed with the last generation of servers and the version 5 of iLO, released mid-2017, cf. “silicon
root of trust”, https://support.hpe.com/hpsc/doc/public/display?docId=a00018320en_us

35

https://support.hpe.com/hpsc/doc/public/display?docId=a00018320en_us

KTHXBYE

Thanks for your attention

Questions ?
To contact us:

fabien [dot] perigaud [at] synacktiv [dot] com - @0xf4b
alexandre [dot] gazet [at] airbus [dot] com

snorky [at] insomnihack [dot] net - @_Sn0rkY

36

	Introduction
	Previous works
	Firmware security
	A firmware backdoor
	Conclusion

