
Implementing your own generic unpacker

HITB Singapore 2015

Julien Lenoir - julien.lenoir@airbus.com

October 14, 2015

Implementing your own generic unpacker

Outline

1 Introduction

2 Test driven design

3 Fine tune algorithm

4 Demo

5 Results

6 Conclusion

October 14, 2015 2

Implementing your own generic unpacker

Outline

1 Introduction

2 Test driven design

3 Fine tune algorithm

4 Demo

5 Results

6 Conclusion

October 14, 2015 3

Implementing your own generic unpacker

Context

Why did we do this?
For malware classification purposes

No opensource implementation matching our constraints

Constraints
Work on bare metal as well as on any virtualization solution (VMware, VirtualBox,
etc.)

Rebuild a valid PE for static analysis. Runnable PE for dynamic analysis is even
better

Prevent malware from detecting unpacking process

October 14, 2015 4

Implementing your own generic unpacker

Generic unpacking is not new

Existing tools
Renovo (2007)

Omniunpack (2007)

Justin (2008)

MutantX-S (2013)

Packer Attacker (2015)

Our work
Own implementation of MutantX-S engine which is based on Justin

October 14, 2015 5

Implementing your own generic unpacker

Targets simple packers

Our tool targets packers that fully unpack original code before executing it

Works on
Popular COTS packers (Aspack, Pecompact, etc.)

Homemade packers

Does not work on
Virtualizers (Armadillo, VMProtect)

Packers that interleave unpacking layers and original code

October 14, 2015 6

Implementing your own generic unpacker

What is a simple packer?

Packer code
Packed Executable

(compressed or
encrypted)

Packer
entrypoint

Original
program

entrypoint

1. decompress/decrypt

2. jumps to

October 14, 2015 7

Implementing your own generic unpacker

What is a simple packer?

Packer code
Packed Executable

(compressed or
encrypted)

Packer
entrypoint

Original
program

entrypoint

1. Uncompress/decrypt

2. jumps to

Unpacked
Executable

October 14, 2015 8

Implementing your own generic unpacker

What is a simple packer?

Packer code
Packed Executable

(compressed or
encrypted)

Packer
entrypoint

Original
program

entrypoint

1. decompress/decrypt

2. jumps to

Unpacked
Executable

October 14, 2015 9

Implementing your own generic unpacker

Find the holy OEP

Goal
Find the original entry point (OEP)

General idea
Program is run in an instrumented Windows environment

Dynamic code generation is monitored at page level

3 steps
Step 1: program is run once to trace both WRITE and EXECUTE on memory

Step 2: apply an algorithm to this trace to determine OEP

Step 3: program is run once again until OEP is reached, then dumped

October 14, 2015 10

Implementing your own generic unpacker

step 1: program execution

Packer
code

Decompress layer 1

Timeline

Write
L1

October 14, 2015 11

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Uncompress layer 1

Timeline

Write
L1

October 14, 2015 12

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Execute layer 1

Timeline

Write
L1

Exec
L1

October 14, 2015 13

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Uncompress layer 2

Layer 2

Timeline

Write
L1

Exec
L1

Write
L2

October 14, 2015 14

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Execute layer 2

Layer 2

Timeline

Write
L1

Exec
L1

Write
L2

Exec
L2

October 14, 2015 15

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Unpack program data

Layer 2
Program

data

Timeline

Write
L1

Exec
L1

Write
L2

Exec
L2

Write
D1

October 14, 2015 16

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Unpack program code

Layer 2
Program

data
Program
Code

Timeline

Write
L1

Exec
L1

Write
L2

Exec
L2

Write
D1

Write
C1

October 14, 2015 17

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Execute program code

Layer 2
Program

data
Program
Code

Timeline

Write
L1

Exec
L1

Write
L2

Exec
L2

Write
D1

Write
C1

Exec
C1

October 14, 2015 18

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Timeline

Write
L1

Program writes in its data

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

October 14, 2015 19

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Timeline

Write
L1

Program executes subfunction

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

Exec
C2

October 14, 2015 20

Implementing your own generic unpacker

step 1: program execution

Packer
code

Layer 1

Timeline

Write
L1

Process terminates

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

Exec
C2

The
end

October 14, 2015 21

Implementing your own generic unpacker

step 2: OEP identification

Apply algorithm on excution trace

Packer
code

Layer 1

Timeline

Write
L1

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

Exec
C2

OEP

October 14, 2015 22

Implementing your own generic unpacker

step 2: OEP identification

Filter out written only pages and executed only pages

Packer
code

Layer 1

Timeline

Write
L1

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

Exec
C2

OEP

October 14, 2015 23

Implementing your own generic unpacker

step 2: OEP identification

Keep pages that are executed and written

Packer
code

Layer 1

Timeline

Write
L1

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

Exec
C2

OEP

October 14, 2015 24

Implementing your own generic unpacker

step 2: OEP identification

Find the last written page

Packer
code

Layer 1

Timeline

Write
L1

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

Exec
C2

OEP

October 14, 2015 25

Implementing your own generic unpacker

step 2: OEP identification

OEP is at first executed address after last write

Packer
code

Layer 1

Timeline

Write
L1

Exec
L1

Layer 2

Write
L2

Exec
L2

Program
data

Write
D1

Program
Code

Write
C1

Exec
C1

Write
D2

Exec
C2

OEP

October 14, 2015 26

Implementing your own generic unpacker

Tracking memory access

How?
By changing memory access rights

Write or execute access on memory page generates exceptions

We catch those exceptions to monitor program behavior

No page can be both executable and writable

In details
Sets all pages to executable prior to execution

Run the process

On write attempt change page protection from executable to writable
On execute attempt change page protection from writable to executable
Do it until process terminates or a given time elapses

October 14, 2015 27

Implementing your own generic unpacker

Outline

1 Introduction

2 Test driven design

3 Fine tune algorithm

4 Demo

5 Results

6 Conclusion

October 14, 2015 28

Implementing your own generic unpacker

Main design choices

Our machinery runs inside the OS

Advantage
Compatible with any virtualization solution

Disadvantages
A malware can detect virtualization: out of scope

Targeted malware can detect our unpacker (driver name, etc.)

Supported OS: Windows 7 32 bits in PAE mode

Limitations
Old system but it is enough for userland programs

No support of 64 bit samples

October 14, 2015 29

Implementing your own generic unpacker

Keep track of unpacking

We don’t want the packer to
Allocate memory both writable and executable

Change its memory protection

Generate dynamically code without our knowledge

Hooking memory system calls
NtAllocateVirtualMemory

NtProtectVirtualMemory

...

October 14, 2015 30

Implementing your own generic unpacker

Userland exception path

1. Processor transfers execution
to the kernel #PF handler.

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

Page fault handler

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

no Specific processing

October 14, 2015 31

Implementing your own generic unpacker

Userland exception path

2. Handles memory management
faults. Like physical page in page
file (swap).

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

Page fault handler

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

no Specific processing

October 14, 2015 32

Implementing your own generic unpacker

Userland exception path

3. Sort userland and kernel land
exceptions. Forward exceptions to
debuggers.

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

Page fault handler

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

no Specific processing

October 14, 2015 33

Implementing your own generic unpacker

Userland exception path

4. Exception transfered to first
registered handlers in userland
process. Visible by all threads.

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

Page fault handler

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

no Specific processing

October 14, 2015 34

Implementing your own generic unpacker

Userland exception path

5. Thread specific exception
handlers (try / catch).

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

Page fault handler

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

no Specific processing

October 14, 2015 35

Implementing your own generic unpacker

Architecture: first attempt

Catching exceptions at userland level

Advantage
Easy to implement

Disadvantage
Need to have code inside target process

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

Page fault handler

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

October 14, 2015 36

Implementing your own generic unpacker

Problem: self modifying page

Case
Encountered in mpress packed executables

What happens:
Some memory pages are meant to be RWX

Those pages are self modifying

We enter an infinite loop

October 14, 2015 37

Implementing your own generic unpacker

What happens

EIP at 401009
EAX is 0

PAGE 401000 EXECUTABLE

401007 NOP
401008 NOP

>401009 MOV EAX,401234
40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 38

Implementing your own generic unpacker

What happens

EIP at 40100E
EAX is 401234

PAGE 401000 EXECUTABLE

401007 NOP
401008 NOP
401009 MOV EAX,401234

>40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 39

Implementing your own generic unpacker

What happens

EIP at 40100E
EAX is 401234

Exception (type 1 write)
Invalid write access on address 401234

PAGE 401000 EXECUTABLE

401007 NOP
401008 NOP
401009 MOV EAX,401234

>40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 40

Implementing your own generic unpacker

What happens

EIP at 40100E
EAX is 401234

Exception (type 1 write)
Invalid write access on address 401234
Swap page protection

PAGE 401000 WRITABLE

401007 NOP
401008 NOP
401009 MOV EAX,401234

>40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 41

Implementing your own generic unpacker

What happens

EIP at 40100E
EAX is 401234

Exception (type 1 write)
Invalid write access on address 401234
Swap page protection
Resume process execution at 40100E

PAGE 401000 WRITABLE

401007 NOP
401008 NOP
401009 MOV EAX,401234

>40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 42

Implementing your own generic unpacker

What happens

EIP at 40100E
EAX is 401234

Exception (type 1 write)
Invalid write access on address 401234
Swap page protection
Resume process execution at 40100E
Exception (type 8 execute)
Invalid execute access on address 40100E

PAGE 401000 WRITABLE

401007 NOP
401008 NOP
401009 MOV EAX,401234

>40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 43

Implementing your own generic unpacker

What happens

EIP at 40100E
EAX is 401234

Exception (type 1 write)
Invalid write access on address 401234
Swap page protection
Resume process execution at 40100E
Exception (type 8 execute)
Invalid execute access on address 40100E
Swap page protection

PAGE 401000 EXECUTABLE

401007 NOP
401008 NOP
401009 MOV EAX,401234

>40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 44

Implementing your own generic unpacker

What happens

EIP at 40100E
EAX is 401234

Exception (type 1 write)
Invalid write access on address 401234
Swap page protection
Resume process execution at 40100E
Exception (type 8 execute)
Invalid execute access on address 40100E
Swap page protection
Resume process execution at 40100E
...
Infinite loop

PAGE 401000 EXECUTABLE

401007 NOP
401008 NOP
401009 MOV EAX,401234

>40100E XOR BYTE PTR DS : [EAX] ,42
401011 NOP
. . .
401234 db 0

October 14, 2015 45

Implementing your own generic unpacker

Architecture update: catch single-step exceptions

In two steps

1. Access violation :

Set page writable and executable
Activate single-step

Resume process execution

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

KiTrap01

no Specific processing

October 14, 2015 46

Implementing your own generic unpacker

Architecture update: catch single-step exceptions

In two steps

1. Access violation :

Set page writable and executable
Activate single-step

Resume process execution

2. Int01 Trap (single-step) :

Restore page protection to
executable
Remove single-step

Resume process execution

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

KiTrap01

no Specific processing

October 14, 2015 47

Implementing your own generic unpacker

Problem: syscall sanitization

Case
Encountered in a binary packed with NSPack 2.4

What happens:
packer calls NtProtectVirtualMemory during its unpacking process

This syscall has output arguments

Argument address is executable but not writable
Syscall fails and so does unpacking

October 14, 2015 48

Implementing your own generic unpacker

What happens

System call input sanitization is exception based:

NTSTATUS NtProtectV i r tua lMemory (. . . , i n t ∗ pOldAccess)
{

t r y
{

ProbeForWrite (pOldAccess , s i z e o f (i n t)) ;

MiProtectVi ru ta lMemory (. . . , pOldAccess) ;
}
except
{

r e t u r n ERROR_NO_ACCESS;
}

}

ProbeForWrite actually writes the whole buffer to ensure it is writable
If not writable, exception is generated and caught by the system call

October 14, 2015 49

Implementing your own generic unpacker

What happens

Exception goes through

Page Fault Hander

Memory management fault handler

Kernel exception dispatcher

System call registered SEH

It never reaches userland, we cannot
handle it!

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

KiTrap01

Catched by
syscall SEHno

October 14, 2015 50

Implementing your own generic unpacker

What happens

Exception goes through

Page Fault Hander

Memory management fault handler

Kernel exception dispatcher

System call registered SEH

It never reaches userland, we cannot
handle it!

Catching exceptions in userland is not
a good idea

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

KiTrap01

Catched by
syscall SEHno

October 14, 2015 51

Implementing your own generic unpacker

Architecture update: catch exceptions in kernel

In two steps

1. Access violation :

Temporary set the page as writable
Activate single step

Resume kernel execution

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

KiTrap01

no Specific processing

October 14, 2015 52

Implementing your own generic unpacker

Architecture update: catch exceptions in kernel

In two steps

1. Access violation :

Temporary set the page as writable
Activate single step

Resume kernel execution

2. Int01 Trap (single-step) :

Restore page protection to
executable
Remove single-step

Resume kernel execution

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

KiTrap01

no Specific processing

October 14, 2015 53

Implementing your own generic unpacker

Another tricky case

V i r t u a l P r o t e c t (memory_address , RWX) ;

V i r tua lQuery (address ,& PageProtect ion) ;
i f (PageProtect ion == RWX)
{

goto cont inue_unpacking ;
}
e lse
{

goto e r r o r ;
}

Hooking of memory system calls is not sufficient

We need to maintain a packer view of the process memory

October 14, 2015 54

Implementing your own generic unpacker

Another tricky case

V i r t u a l P r o t e c t (memory_address , RWX) ;

V i r tua lQuery (address ,& PageProtect ion) ;
i f (PageProtect ion == RWX)
{

goto cont inue_unpacking ;
}
e lse
{

goto e r r o r ;
}

Hooking of memory system calls is not sufficient

We need to maintain a "packer view" of the process memory

Were does the OS store information related to memory?

October 14, 2015 55

Implementing your own generic unpacker

In physical memory

64 bits PTE entry in PAE mode

Present PTE :

1 bit for present

2 bits for memory protection:
combination of R,W,E

3 ignored (free) bits

Non present PTE :

1 bit for present

63 ignored (free) bits

October 14, 2015 56

Implementing your own generic unpacker

In physical memory

Windows memory manager stores information in both invalid and valid PTEs

Examples of invalid PTEs
Demand zero: demand paging

Page File: physical page is in paging file

Prototype PTE: shared memory

In valid PTEs
Information related to copy-on-write mechanisms

October 14, 2015 57

Implementing your own generic unpacker

In kernel virtual memory

Two memory structures involved:

Virtual Address Descriptors
The view of the process memory virtual address space

Binary tree where every node is a memory region

Information related to memory regions

Working set list entries
Global array containing protection of every memory page

October 14, 2015 58

Implementing your own generic unpacker

Example of VirtualQuery

Process virtual memory

Kernel virtual memory

VirtualQuery

Physical memory

Node
@1234

@1234
RW

@1234 : RW

Query info about @1234

Queries protect of @1234
Retrieves region
attributes

VAD Tree

WSLE

Page Table

NtQueryVirtualMemory

October 14, 2015 59

Implementing your own generic unpacker

Unsynchronizing memory structures

Process virtual memory

Kernel virtual memory

VirtualQuery

Physical memory

Node
@1234

@1234
RW

@1234 : RX

Query info about @1234

Queries protect of @1234
Retrieves region
attributes

VAD Tree

WSLE

Page Table

NtQueryVirtualMemory

October 14, 2015 60

Implementing your own generic unpacker

Unsynchronizing memory structures

Good points
No need for a packer view any more

No need to mess with complex kernel memory structures

Beware of resynchronization
Happens on memory system calls

When memory manager handles page faults (demand paging, etc.)

October 14, 2015 61

Implementing your own generic unpacker

Architecture: final

Hook in two places:

Memory manager fault handler for page
faults

Kernel exceptions dispatcher for
single-step exceptions

KiTrap0E

Kernel land

User land

Resumed
execution

yes

no

Userland Exception?

MmAccessFault

vectored exception
handlers

KiDispatchException

Memory manager
fault handler

Kernel exception
dispatcher

SEH handlers

yes

yes

no

Memory management fault?

Handled by debugger?

Mem syscalls hooked

KiTrap01

no Specific processing

October 14, 2015 62

Implementing your own generic unpacker

Global architecture

User land

Monitored process

Driver

Python script

Kernel land

1. create suspended
4. resume

exceptions

3. change memory
protection 2. send pid

collect

5. retrieve
exceptions

6. dump

0Dump and IAT rebuild is done with Scylla library

October 14, 2015 63

Implementing your own generic unpacker

Outline

1 Introduction

2 Test driven design

3 Fine tune algorithm

4 Demo

5 Results

6 Conclusion

October 14, 2015 64

Implementing your own generic unpacker

Loader issue

Issue
Unpacking algorithm can be disturbed by the unpacked process startup

By the DLL loader if
The process loads libraries dynamically on startup (after OEP)

Those libraries are rebased

October 14, 2015 65

Implementing your own generic unpacker

Userland library loader

All DLLs have a standard entrypoint Dllmain called during library loading

Loader does
Ensure the DLL is not already loaded

Map the DLL in memory, possibly rebased at randomized address

Patch relocations if DLL is rebased

Set appropriate protection on PE sections

Executes DLL entrypoint (DllMain)

October 14, 2015 66

Implementing your own generic unpacker

Loader at work

PE header
RWX

Code section
RWX

Data section
RWX

Module
base

1. Protects sections

October 14, 2015 67

Implementing your own generic unpacker

Loader at work

PE header
RWX

Code section
RWX

Data section
RWX

Module
base

1. Protects sections

PE header
RWX

Code section
RWX

Data section
RWX

Module
base

2. Patch relocations

October 14, 2015 68

Implementing your own generic unpacker

Loader at work

PE header
RWX

Code section
RWX

Data section
RWX

Module
base

1. Protects sections

PE header
RWX

Code section
RWX

Data section
RWX

Module
base

2. Patch relocations

PE header
R

Code section
RX

Data section
RW

Module
base

3. Protects sections

October 14, 2015 69

Implementing your own generic unpacker

Loader at work

PE header
RWX

Code section
RWX

Data section
RWX

Module
base

1. Protects sections

PE header
RWX

Code section
RWX

Data section
RWX

Module
base

2. Patch relocations

PE header
R

Code section
RX

Data section
RW

Module
base

3. Protects sections

PE header
R

Code section
RX

Data section
RW

Module
base

Dllmain

4. Calls Dllmain

October 14, 2015 70

Implementing your own generic unpacker

Loader artifact

Unpacked program loads a library dynamically

Packer
code

Loader patch relocations

Program
Code

Timeline

Write
reloc

Real
OEP

Program
Code

Wrong OEP

October 14, 2015 71

Implementing your own generic unpacker

Loader artifact

Unpacked program loads a library dynamically

Packer
code

Loader calls Dllmain

Program
Code

Timeline

Write
reloc

Real
OEP

Exec
dllmain

Program
Code

Wrong OEP

October 14, 2015 72

Implementing your own generic unpacker

Loader artifact

Invalid OEP computation

Packer
code

Loader calls Dllmain

Program
Code

Timeline

Write
reloc

Real
OEP

Exec
dllmain

Program
Code

Wrong OEP

October 14, 2015 73

Implementing your own generic unpacker

Tune algorithm

Unpacking executable
Filter out exceptions induced by the loader during loading

Loader information
Is loader at work

Which DLL is being loaded

Which thread of the process is loading the DLL

October 14, 2015 74

Implementing your own generic unpacker

Tune algorithm

Unpacking DLLs
Keep only exceptions induced by the loader during loading process

Packed DLLs
Packer code execute in Dllmain

Packer jumps to DLL OEP: real Dllmain

We can determine DLL OEP and dump the unpacked DLLs !

October 14, 2015 75

Implementing your own generic unpacker

Outline

1 Introduction

2 Test driven design

3 Fine tune algorithm

4 Demo

5 Results

6 Conclusion

October 14, 2015 76

Implementing your own generic unpacker

Demo time!

October 14, 2015 77

Implementing your own generic unpacker

Outline

1 Introduction

2 Test driven design

3 Fine tune algorithm

4 Demo

5 Results

6 Conclusion

October 14, 2015 78

Implementing your own generic unpacker

No that easy to test

Packers
Many different packers

Not always easy to get

Packed samples
What is exactly the version of packer used ?

What are the options enables when packing sample

October 14, 2015 79

Implementing your own generic unpacker

During design

Methodology :

Using packers (default options)

Using sorted packed samples (Tutz4you)

Packer Dump with valid OEP Working PE
UPX (3.91) Yes Yes
MPRESS (2.19) Yes No
PeCompact (2.X) Yes Yes/No
NsPack (2.4 to 3.7) Yes Yes
Aspack (2.2) Yes Yes
Asprotect Yes No
Armadillo No No
VMProtect No No

October 14, 2015 80

Implementing your own generic unpacker

On random virustotal samples

Methodology :

Request many packed samples from virus total

Keep 20 for each packer samples randomly

Manual anlysis to ensure OEP is valid

Packer Valid PE Valid OEP found Unpacked PE runs
UPX 13 12 (~90%) 2(~15%)
Aspack 12 9 (~75%) 3(~25%)
NSpack 15 9 (~60%) 5(~30%)
PeCompact 14 10 (~91%) 4(~29%)
Upack 15 13 (~86%) 4 (~26%)
fsg 10 7 (~70%) 2(~20%)
exe32pack 6 4 (~66%) 0(~0%)

October 14, 2015 81

Implementing your own generic unpacker

Outline

1 Introduction

2 Test driven design

3 Fine tune algorithm

4 Demo

5 Results

6 Conclusion

October 14, 2015 82

Implementing your own generic unpacker

Good point
Easy and automatable unpacking of simple packers

What should we improve?
Add heuristics to improve end of unpacking detection

Support of Windows 7 64 bits?

Support of Windows 10?

Code available at
https://bitbucket.org/iwseclabs/gunpack.git

Maybe you can
Make your own generic unpacker!

October 14, 2015 83

Implementing your own generic unpacker

Thank you for listening !

Any questions ?

October 14, 2015 84

	Introduction
	Test driven design
	Fine tune algorithm
	Demo
	Results
	Conclusion

