
GUSTAVE: Fuzz It Like It’s App

(feat. QEMU & AFL)

Stéphane Duverger, Anaïs Gantet

THC - March 8, 2019

GUSTAVE

Outline

1 Introduction

2 State of the Art

3 GUSTAVE internals

4 POK and Gustave

5 Conclusion

THC - March 8, 2019 2

GUSTAVE

Outline

1 Introduction

2 State of the Art

3 GUSTAVE internals

4 POK and Gustave

5 Conclusion

THC - March 8, 2019 3

GUSTAVE

What we’ll talk about

Some basics about
Fuzzing

OS system calls

AFL/QEMU

The challenges of fuzzing kernels as simple user programs
Input translation

Target instrumentation

Target behavior monitoring

Crash detection and classification

THC - March 8, 2019 4

GUSTAVE

Target

What?
Embedded OS in charge of space
partitioning

kernel/user isolation
memory segregation
process partitioning through address
spaces
etc.

Security considerations
Problem: Serious security consequences on segregation bypass

Question: Is this space partitioning correctly implemented? not breakable?

THC - March 8, 2019 5

GUSTAVE

Attack playground

Context
attack vector: from an unprivileged
program

attack surface: kernel services via
system calls

aim: try to bypass the memory
segregation

How?
Build "malicious" user programs performing system calls
Craft weird system call arguments

to trigger security vulnerabilities
to try to run/cover the maximum of OS existing code

THC - March 8, 2019 6

GUSTAVE

Toward full automation

Expected workflow
1 Prepare a platform and its OS environment

2 Save full system state

3 Inject the code of a "malicious" user program

4 Run the attack

5 Analyze the impact

6 Restore full system state

7 Goto 3

THC - March 8, 2019 7

GUSTAVE

Outline

1 Introduction

2 State of the Art

3 GUSTAVE internals

4 POK and Gustave

5 Conclusion

THC - March 8, 2019 8

GUSTAVE

Vulnerability discovery methods

Static analysis
Manual code review (white box)

Reverse code engineering (black box)

Automation (formal methods, model checking)

Runtime analysis
Concrete/symbolic execution (concolic testing)

Program tracing/instrumentation

Fuzzing (chosen one)

THC - March 8, 2019 9

GUSTAVE

Fuzzing methods

Did you say random ?
Basic fuzzing: the children and keyboard paradigm

Catalog-guided/model-based: classification, prior knowledge of API

Coverage-guided: maximize target code coverage

Mix coverage-guided/behavior monitoring
No previous knowledge of target

Try to cover as much as possible from entries (system calls)

Classify fuzzed input from target behavior upon execution

Adapt/evolve faulting inputs to trigger more crashes

Solid candidate
AFL: American Fuzzy Lop, Google Inc.

THC - March 8, 2019 10

GUSTAVE

Fuzzing methods

Did you say random ?
Basic fuzzing: the children and keyboard paradigm

Catalog-guided/model-based: classification, prior knowledge of API

Coverage-guided: maximize target code coverage

Mix coverage-guided/behavior monitoring
No previous knowledge of target

Try to cover as much as possible from entries (system calls)

Classify fuzzed input from target behavior upon execution

Adapt/evolve faulting inputs to trigger more crashes

Solid candidate
AFL: American Fuzzy Lop, Google Inc.

THC - March 8, 2019 10

GUSTAVE

Fuzzing methods

Did you say random ?
Basic fuzzing: the children and keyboard paradigm

Catalog-guided/model-based: classification, prior knowledge of API

Coverage-guided: maximize target code coverage

Mix coverage-guided/behavior monitoring
No previous knowledge of target

Try to cover as much as possible from entries (system calls)

Classify fuzzed input from target behavior upon execution

Adapt/evolve faulting inputs to trigger more crashes

Solid candidate
AFL: American Fuzzy Lop, Google Inc.

THC - March 8, 2019 10

GUSTAVE

AFL in a nutshell

One of the best fuzzer out there
Free & open-source software: http://lcamtuf.coredump.cx/afl/

A lot of discovered vulnerabilities (mainly applications, libs)

Advanced fuzzing technology based on evolutionary algorithms

AFL workflow
Phase 1: instrumentation

Rebuild target with instrumentationa

Inject shims at every target basic block
The shims will update an execution coverage trace bitmap (shim)

Phase 2: fuzzing
Generate inputs to maximize target code coverage
Spawn target process and monitor its execution
Classify inputs based on exit status and trace bitmap

aneed source code, binary mode possible

THC - March 8, 2019 11

http://lcamtuf.coredump.cx/afl/

GUSTAVE

AFL against libPNG

fork()

AFL code

AFL shim

Target code
write_testcase()

execve(App)

1

Instrumentation
afl-gcc

void main(argc, argv){
 PNG_open(argv[1]);
}

Application

Target
libPNG

3

Coverage
trace bitmap

2

Fuzzing process
afl-fuzz

waitpid(&status)

classify()

4

#Fault

THC - March 8, 2019 12

GUSTAVE

AFL against OS kernel?

fork()

AFL code

AFL shim

Target code
write_testcase()

execve(Firmware)

3

Coverage
trace bitmap

2

Fuzzing process
afl-fuzz

waitpid(&status)

classify()

4

Trap?

1

Instrumentation
afl-gcc

Firmware

Kernel App

App

App

App

Update ?

Run ?

Translate ?

THC - March 8, 2019 13

GUSTAVE

State-of-the-art tools

Objectives
Try to reuse available softwares as building blocks

Choose the most flexible/versatile technologies

evicted syzkaller/MWRlabs

Interesting candidates to fuzz kernels with AFL?
kAFL, Intel centric, OS agnostic

Triforce-AFL, arch/OS agnostic (almost)

Unicorn-AFL, CPU only

Conclusion: nobody’s perfect
Inappropriate design choices

. . . ok build our own :)

THC - March 8, 2019 14

GUSTAVE

State-of-the-art tools

Objectives
Try to reuse available softwares as building blocks

Choose the most flexible/versatile technologies

evicted syzkaller/MWRlabs

Interesting candidates to fuzz kernels with AFL?
kAFL, Intel centric, OS agnostic

Triforce-AFL, arch/OS agnostic (almost)

Unicorn-AFL, CPU only

Conclusion: nobody’s perfect
Inappropriate design choices

. . . ok build our own :)

THC - March 8, 2019 14

GUSTAVE

Assemble and extend existing building blocks

Selected technologies
Fuzzing with AFL

Simulation environment with QEMU

Extend the best tools
No heavy modifications (internals) allowed !

Build glue to make AFL/QEMU interact seamlessly

THC - March 8, 2019 15

GUSTAVE

Outline

1 Introduction

2 State of the Art

3 GUSTAVE internals

4 POK and Gustave

5 Conclusion

THC - March 8, 2019 16

GUSTAVE

GUSTAVE architecture

kernel app 1 app N[…]

vRAM

GUSTAVE Board Syscall Generator

Coverage MAP

Shared Memory

Fuzzed
Input

AFL - Qemu
sync

QEMU

Update

Read-Update

Inject User Code

- input generation
- status analysis
- code coverage

AFL

THC - March 8, 2019 17

GUSTAVE

GUSTAVE answer to challenges

How to run?
Implement an AFL-QEMU board

Synchronize with AFL

How to translate?
Requires to define an input logic
Idea is to translate them either as:

Sequences of system calls (ID and arguments)
Fixed system call ID with fuzzed arguments

THC - March 8, 2019 18

GUSTAVE

GUSTAVE answer to challenges

How to run?
Implement an AFL-QEMU board

Synchronize with AFL

How to translate?
Requires to define an input logic
Idea is to translate them either as:

Sequences of system calls (ID and arguments)
Fixed system call ID with fuzzed arguments

THC - March 8, 2019 18

GUSTAVE

GUSTAVE answer to challenges (2)

How to trap?
Timeout and normal exits are easy to trap

Faulty behaviors are tricky

We are trying to crash an OS

Should we monitor the CPU itself?

No SegFault for OS
This is an application paradigm

Need to hook on controlled failures: panic, reboot, etc.
Requires to define partitioning bypass oracles:

memory region boundary checks
internal CPU state/fault interception

THC - March 8, 2019 19

GUSTAVE

QEMU board details

How to update? (trace bitmap)
Target kernel will hit bitmap through arbitrary mm i/o

Map host bitmap SHM physical pages to VM mm i/o area

Zero overhead (like it’s app)

Core features/optimizations
Snapshot API to save/restore VM state

Internal breakpoints subversion (no gdb :)

Fix CPU state (paging), intercept exceptions

No TCG modification (can use KVM)

THC - March 8, 2019 20

GUSTAVE

QEMU board details

How to update? (trace bitmap)
Target kernel will hit bitmap through arbitrary mm i/o

Map host bitmap SHM physical pages to VM mm i/o area

Zero overhead (like it’s app)

Core features/optimizations
Snapshot API to save/restore VM state

Internal breakpoints subversion (no gdb :)

Fix CPU state (paging), intercept exceptions

No TCG modification (can use KVM)

THC - March 8, 2019 20

GUSTAVE

AFL fork-server mode

execve(TARGET)

fork()

write_testcase()

read(&status)

classify()

while(true)

AFLAFL code

AFL shim

Target code

fork()

waitpid(&status)

write(status)

resume(FUZZY)

while(true)

TARGET

THC - March 8, 2019 21

GUSTAVE

QEMU board fork-server

execve(QEMU)

write_testcase()

read(&status)

classify()

while(true)

QEMU
fork()

AFLAFL code

GUSTAVE code

Target code

write(status)

restore(VM)

event handler

BP(end-of-exec)

resume(VM)

translate(FUZZY)

inject(code)

run target

exit(reason)

BP(kernel ready)

snapshot(VM)

init board

THC - March 8, 2019 22

GUSTAVE

Outline

1 Introduction

2 State of the Art

3 GUSTAVE internals

4 POK and Gustave

5 Conclusion

THC - March 8, 2019 23

GUSTAVE

What is POK?

"POK, a real-time kernel for secure embedded systems"
A small OS, open-source

Implements memory partitioning

90% formally verified (according to the websitea)
ahttps://pok-kernel.github.io/

You said "secure"?
Still contains vulnerabilities we discovered by reading the OS code manually

The best target to validate the first prototype of our proposed tool

Aim: rediscover the known vulnerabilities with AFL

THC - March 8, 2019 24

GUSTAVE

What is POK?

"POK, a real-time kernel for secure embedded systems"
A small OS, open-source

Implements memory partitioning

90% formally verified (according to the websitea)
ahttps://pok-kernel.github.io/

You said "secure"?
Still contains vulnerabilities we discovered by reading the OS code manually

The best target to validate the first prototype of our proposed tool

Aim: rediscover the known vulnerabilities with AFL

THC - March 8, 2019 24

GUSTAVE

GUSTAVE and POK: architecture
(POK partially recompiled with AFL-GCC)

POK app 1 app N[…]

vRAM

GUSTAVE Board POK SysGen

Coverage MAP

Shared Memory

Fuzzed
Input

AFL - Qemu
sync

QEMU

Update

Read-Update

Inject User Code

- input generation
- status analysis
- code coverage

AFL

THC - March 8, 2019 25

GUSTAVE

GUSTAVE and POK: attack surface

POK syscall API
About 50 kernel functions

Thread management
Partition information
Port send/receive
etc.

Callable from the user program with
The corresponding syscall ID
1 to 5 arguments as input

Various argument types
Pointer to structures
Integer
String
etc.

THC - March 8, 2019 26

GUSTAVE

GUSTAVE and POK: fuzzing strategies

2 different versions for POK SysGen
Totally random inputs (including pointer values)

Controlled pointers and random pointed content

THC - March 8, 2019 27

GUSTAVE

GUSTAVE and POK: memory vulnerability detection

POK memory management
Based on Intel x86 segmentation

1 code/data segment for each user program

1 code/data segment for the kernel (FLAT!!)

GUSTAVE memory oracles
Relies on Intel x86 paging (not used by POK)

Mimics POK memory layout (kernel / user programs)

Unmaps the rest of the memory

Traps Page Faults in QEMU board

Notifies AFL when Page Faults occur

THC - March 8, 2019 28

GUSTAVE

GUSTAVE against POK

THC - March 8, 2019 29

GUSTAVE

GUSTAVE and POK: results

It works! :)
First valid proof of concept against a real OS

Expected vulnerabilities detected by GUSTAVE

Performances
Reach ∼ 350 tests/second on a single core/thread
Several optimizations

Single-threaded execution
Optimize scheduling (time frames)

Crash analysis
25 new write-everywhere vulnerabilities found in a couple of seconds

more time needed to analyze the further crash cases

THC - March 8, 2019 30

GUSTAVE

Outline

1 Introduction

2 State of the Art

3 GUSTAVE internals

4 POK and Gustave

5 Conclusion

THC - March 8, 2019 31

GUSTAVE

Takeaways

GUSTAVE usage
1 Preliminarily, reverse some kernel parts

System call operation (ABI)
Memory segregation strategy

2 Implement the syscall generator specific to the target
3 Define and add vulnerability detection strategies
4 Run GUSTAVE
5 Analyze the detected vulnerabilities, report, exploit, enjoy :)

THC - March 8, 2019 32

GUSTAVE

Conclusion and future outlook

GUSTAVE and state-of-the-art advances
Capable to fuzz all syscalls (not mount only)

Uses AFL and QEMU without internals modification

Finds vulnerabilities not caught by the OS itself

Run with acceptable performances (hardware-virtualization when supported)

Next steps?
Open-source the tool

Play with other kernel targets

Make the tool more user-friendly (target specificities via config file)

THC - March 8, 2019 33

GUSTAVE

Thanks for your attention. Any questions ?

stephane.duverger@airbus.com
anais.gantet@airbus.com

@AirbusSecLab
(https://airbus-seclab.github.io)

Appliquez-vous à développer un
progrès aussi minime soit-il. Vous en
ferez un bien général.

Gustave Eiffel

Fuzz it like it’s app, fuzz it like it’s app.

Gustave AFL

THC - March 8, 2019 34

	Introduction
	State of the Art
	GUSTAVE internals
	POK and Gustave
	Conclusion

