GUSTAVE: Fuzz It Like It’s App

(feat. QEMU & AFL)

Stéphane Duverger, Anais Gantet

THC - March 8, 2019

AIRBUS

GUSTAVE

Outline

@ Introduction

a State of the Art

© GUSTAVE internals
Q POK and Gustave

e Conclusion

THC - March 8, 2019 2 AIRBUS

GUSTAVE

Outline

@ Introduction

THC - March 8, 2019 3 AIRBUS

GUSTAVE

What we’ll talk about

Some basics about

@ Fuzzing
@ OS system calls
e AFL/QEMU

The challenges of fuzzing kernels as simple user programs

@ Input translation

@ Target instrumentation

@ Target behavior monitoring

@ Crash detection and classification

THC - March 8, 2019 4 AIRBUS

GUSTAVE

Target

@ Embedded OS in charge of space | Program 1 H Program 2 | 1 2
partitioning T T
o kernel/user isolation | Kemel | Ll 2

@ memory segregation

@ process partitioning through address |
spaces

e etc.

Security considerations

@ Problem: Serious security consequences on segregation bypass
@ Question: Is this space partitioning correctly implemented? not breakable?

Hardware | 1 2

THC - March 8, 2019 5 AIRBUS

GUSTAVE

Attack playground

@ attack vector: from an unprivileged EnREn
P‘rograml ‘ Program 2 ‘ | 1 & 2

program

@ attack surface: kernel services via ‘ ¥ Kemel =t ;
system calls ‘ :

Hardware ‘ 1 ‘ 2

@ aim: try to bypass the memory
segregation

How?

@ Build "malicious" user programs performing system calls
@ Craft weird system call arguments

e to trigger security vulnerabilities
@ to try to run/cover the maximum of OS existing code

THC - March 8, 2019 6 AIRBUS

GUSTAVE

Toward full automation

Expected workflow

1 Prepare a platform and its OS environment
2 Save full system state

3 Inject the code of a "malicious" user program
4 Run the attack

5 Analyze the impact

6 Restore full system state

7 Goto 3

THC - March 8, 2019 7 AIRBUS

GUSTAVE

Outline

a State of the Art

THC - March 8, 2019 8 AIRBUS

GUSTAVE

Vulnerability discovery methods

Static analysis

@ Manual code review (white box)
@ Reverse code engineering (black box)
@ Automation (formal methods, model checking)

Runtime analysis

@ Concrete/symbolic execution (concolic testing)
@ Program tracing/instrumentation
@ Fuzzing (chosen one)

THC - March 8, 2019 9 AIRBUS

GUSTAVE
Fuzzing methods

Did you say random ?

@ Basic fuzzing: the children and keyboard paradigm
@ Catalog-guided/model-based: classification, prior knowledge of API
@ Coverage-guided: maximize target code coverage

THC - March 8, 2019 10 AIRBUS

GUSTAVE

Fuzzing methods

Did you say random ?

@ Basic fuzzing: the children and keyboard paradigm
@ Catalog-guided/model-based: classification, prior knowledge of API
@ Coverage-guided: maximize target code coverage

Mix coverage-guided/behavior monitoring

@ No previous knowledge of target

@ Try to cover as much as possible from entries (system calls)
@ Classify fuzzed input from target behavior upon execution

@ Adapt/evolve faulting inputs to trigger more crashes

THC - March 8, 2019 10 AIRBUS

GUSTAVE

Fuzzing methods

Did you say random ?
@ Basic fuzzing: the children and keyboard paradigm
@ Catalog-guided/model-based: classification, prior knowledge of API
@ Coverage-guided: maximize target code coverage

Mix coverage-guided/behavior monitoring
@ No previous knowledge of target
@ Try to cover as much as possible from entries (system calls)
@ Classify fuzzed input from target behavior upon execution
@ Adapt/evolve faulting inputs to trigger more crashes

Solid candidate

AFL: American Fuzzy Lop, Google Inc.

THC - March 8, 2019 10 AIRBUS

GUSTAVE

AFL in a nutshell

One of the best fuzzer out there

@ Free & open-source software: http://lcamtuf.coredump.cx/afl/
@ A lot of discovered vulnerabilities (mainly applications, libs)
@ Advanced fuzzing technology based on evolutionary algorithms

AFL workflow

@ Phase 1: instrumentation

o Rebuild target with instrumentation?

o Inject shims at every target basic block

e The shims will update an execution coverage trace bitmap (shim)
@ Phase 2: fuzzing

e Generate inputs to maximize target code coverage

@ Spawn target process and monitor its execution

o Classify inputs based on exit status and trace bitmap

?need source code, binary mode possible

THC - March 8, 2019 11 AIRBUS

http://lcamtuf.coredump.cx/afl/

GUSTAVE

AFL against libPNG

(@) AFL code
@ AFL shim
. Target code

Target
libPNG C)
Instrumentation
afl-gcc
I Application

void main(argc, argv){
PNG_open(argv[1]);

®

Fuzzing process
afl-fuzz

THC - March 8, 2019

!
¥ ¥
S
®]

®

Coverage
trace bitmap
T TT

o
o

#Fault

AIRBUS

GUSTAVE

AFL against OS kernel?
(@) AFL code ® ®

@ AFL shim Fuzzing process Coverage
afl-fuzz trace bitmap

. Target code Tl T
Translate ? H:

@ . Update ? T I

Instrumentation o
afl-gcc H:-

Firmware } Run ?

Trap?

THC - March 8, 2019 13 AIRBUS

GUSTAVE

State-of-the-art tools

Objectives

@ Try to reuse available softwares as building blocks
@ Choose the most flexible/versatile technologies
@ evicted syzkaller/MWRIabs

Interesting candidates to fuzz kernels with AFL?

@ kAFL, Intel centric, OS agnostic
@ Triforce-AFL, arch/OS agnostic (almost)
@ Unicorn-AFL, CPU only

THC - March 8, 2019 14 AIRBUS

GUSTAVE

State-of-the-art tools

Objectives
@ Try to reuse available softwares as building blocks

@ Choose the most flexible/versatile technologies
@ evicted syzkaller/MWRIabs

Interesting candidates to fuzz kernels with AFL?

@ kAFL, Intel centric, OS agnostic
@ Triforce-AFL, arch/OS agnostic (almost)
@ Unicorn-AFL, CPU only

Conclusion: nobody’s perfect

@ Inappropriate design choices
@ ... ok build our own :)

THC - March 8, 2019 14 AIRBUS

GUSTAVE

Assemble and extend existing building blocks

Selected technologies

@ Fuzzing with AFL
@ Simulation environment with QEMU

Extend the best tools

@ No heavy modifications (internals) allowed !
@ Build glue to make AFL/QEMU interact seamlessly

THC - March 8, 2019 15 AIRBUS

GUSTAVE

Outline

© GUSTAVE internals

THC - March 8, 2019 16 AIRBUS

GUSTAVE

GUSTAVE architecture

Update

Shared Memory

THC - March 8, 2019

QO
°
hel

D
O
hel

sync
T -
17

AFL - Qemu I Fuzzed I

AIRBUS

GUSTAVE

GUSTAVE answer to challenges

How to run?

@ Implement an AFL-QEMU board
@ Synchronize with AFL

THC - March 8, 2019 18 AIRBUS

GUSTAVE

GUSTAVE answer to challenges

How to run?

@ Implement an AFL-QEMU board
@ Synchronize with AFL

How to translate?

@ Requires to define an input logic
@ |dea is to translate them either as:

@ Sequences of system calls (ID and arguments)
o Fixed system call ID with fuzzed arguments

THC - March 8, 2019 18 AIRBUS

GUSTAVE

GUSTAVE answer to challenges (2)

How to trap?
@ Timeout and normal exits are easy to trap
@ Faulty behaviors are tricky
@ We are trying to crash an OS
@ Should we monitor the CPU itself?

No SegFault for OS

@ This is an application paradigm

@ Need to hook on controlled failures: panic, reboot, etc.
@ Requires to define partitioning bypass oracles:

@ memory region boundary checks
e internal CPU state/fault interception

THC - March 8, 2019 19 AIRBUS

GUSTAVE

QEMU board details

How to update? (trace bitmap)

@ Target kernel will hit bitmap through arbitrary mm i/o
@ Map host bitmap SHM physical pages to VM mm i/o0 area
@ Zero overhead (like it's app)

THC - March 8, 2019 20 AIRBUS

GUSTAVE

QEMU board details

How to update? (trace bitmap)

@ Target kernel will hit bitmap through arbitrary mm i/o
@ Map host bitmap SHM physical pages to VM mm i/o0 area
@ Zero overhead (like it's app)

Core features/optimizations

@ Snapshot API to save/restore VM state

@ Internal breakpoints subversion (no gdb :)

@ Fix CPU state (paging), intercept exceptions
@ No TCG modification (can use KVM)

THC - March 8, 2019 20 AIRBUS

GUSTAVE

AFL fork-server mode

(@ AFL code AFL TARGET

. Target code I

THC - March 8, 2019 21 AI RBUS

GUSTAVE

QEMU board fork-server

(@ AFL code

() GUSTAVE code

. Target code

AFL

I

THC - March 8, 2019

QEMU
init board
event handler e-------- » run target

L

exit(reason)

AIRBUS

GUSTAVE

Outline

@ POK and Gustave

THC - March 8, 2019 23 AIRBUS

GUSTAVE

What is POK?

"POK;, a real-time kernel for secure embedded systems"

@ A small OS, open-source
@ Implements memory partitioning
@ 90% formally verified (according to the website?)

2https://pok-kernel.github.io/

THC - March 8, 2019 24 AIRBUS

GUSTAVE

What is POK?

"POK, a real-time kernel for secure embedded systems"

@ A small OS, open-source
@ Implements memory partitioning
@ 90% formally verified (according to the website?)

2https://pok-kernel.github.io/

You said "secure"?

@ Still contains vulnerabilities we discovered by reading the OS code manually
@ The best target to validate the first prototype of our proposed tool
@ Aim: rediscover the known vulnerabilities with AFL

THC - March 8, 2019 24 AIRBUS

GUSTAVE

GUSTAVE and POK: architecture
(POK partially recompiled with AFL-GCC)

Update

Shared Memory

THC - March 8, 2019

QEMU

QO

°
]

=

D

O

hel

]

sync
T _
25

AFL - Qemu I Fuzzed I

AIRBUS

GUSTAVE

GUSTAVE and POK: attack surface

POK syscall API ebx arg pointer

@ About 50 kernel functions

eax |
@ Thread management ID |
o Partition information . |
o Port send/receive < 32bits
e etc. o
. argl
@ Callable from the user program with L e
e The corresponding syscall ID arg2
e 1to 5 arguments as input —_—
@ Various argument types arg3
e Pointer to structures arg4
e Integer
e String argb
@ etc.

THC - March 8, 2019 26 AIRBUS

GUSTAVE

GUSTAVE and POK: fuzzing strategies

2 different versions for POK SysGen
@ Totally random inputs (including pointer values)
@ Controlled pointers and random pointed content

ebx arg pointer ebx arg pointer ~
—_—\ _
eax ID | eax ID |
| |
32 bits f 32 bits s‘
-« T e > |
11111111 4 11111111 4
22022222 22222222
33333333 =7 valid memory > 33333333
44444444 55555555 ‘ 44444444
55555555 66666666

THC - March 8, 2019

27 AIRBUS

GUSTAVE

GUSTAVE and POK: memory vulnerability detection

POK memory management

@ Based on Intel x86 segmentation
@ 1 code/data segment for each user program
@ 1 code/data segment for the kernel (FLAT!!)

GUSTAVE memory oracles

@ Relies on Intel x86 paging (not used by POK)

@ Mimics POK memory layout (kernel / user programs)
@ Unmaps the rest of the memory

@ Traps Page Faults in QEMU board

@ Notifies AFL when Page Faults occur

THC - March 8, 2019 28 AIRBUS

GUSTAVE

GUSTAVE against POK
american fuzzy lop 2.52b (gemu-system-i386)

0 days, @ hrs, 0 min, 2 sec
0 days, @ hrs, 0 min, 0 sec
0 days, @ hrs, 0 min, 0 sec
none seen yet

0.03% / 0.20%
1.55 bits/tuple

0
0

(11.11%)
(77.78%)

havoc

372/4096 (9.08%)
402

346.4/sec 0 (0 unique)

1
7

n/a, n/a,
n/a, n/a,
n/a, n/a,
n/a, n/a,
n/a, n/a,
0/0, 0/0
11.11%/2,

THC - March 8, 2019 AIRBUS

GUSTAVE

GUSTAVE and POK: results

It works! :)
@ First valid proof of concept against a real OS
@ Expected vulnerabilities detected by GUSTAVE

Performances

@ Reach ~ 350 tests/second on a single core/thread
@ Several optimizations

e Single-threaded execution
@ Optimize scheduling (time frames)

Crash analysis
@ 25 new write-everywhere vulnerabilities found in a couple of seconds
@ more time needed to analyze the further crash cases

THC - March 8, 2019 30 AIRBUS

GUSTAVE

Outline

e Conclusion

THC - March 8, 2019 31 AIRBUS

GUSTAVE

Takeaways

GUSTAVE usage

@ Preliminarily, reverse some kernel parts

e System call operation (ABI)
e Memory segregation strategy

@ Implement the syscall generator specific to the target

@ Define and add vulnerability detection strategies

© Run GUSTAVE

@ Analyze the detected vulnerabilities, report, exploit, enjoy :)

THC - March 8, 2019 32 AIRBUS

GUSTAVE

Conclusion and future outlook

GUSTAVE and state-of-the-art advances

@ Capable to fuzz all syscalls (not mount only)

@ Uses AFL and QEMU without internals modification

@ Finds vulnerabilities not caught by the OS itself

@ Run with acceptable performances (hardware-virtualization when supported)

Next steps?
@ Open-source the tool
@ Play with other kernel targets
@ Make the tool more user-friendly (target specificities via config file)

THC - March 8, 2019 33 AIRBUS

GUSTAVE

Thanks for your attention. Any questions ?

Appliquez-vous a développer un
progrés aussi minime soit-il. Vous en

. ferez un bien général.
stephane.duverger@airbus.com g

anais.gantet@airbus.com Gustave Eiffel
@AirbusSeclLab o -
(https://airbus-seclab.github.io) Fuzz it like it's app, fuzz it like it's app.

Gustave AFL

THC - March 8, 2019 34 AIRBUS

	Introduction
	State of the Art
	GUSTAVE internals
	POK and Gustave
	Conclusion

